BSRIA Residential Network launch

saryu2

This blog was written by Saryu Vatal, Senior Consultant and Researcher for BSRIA Sustainable Construction Group

The BSRIA Residential Network was launched on the 11th of September, kindly hosted by the Wellcome Trust and well attended by over 50 delegates, comprising of both members and invited guests.  Ian Orme Business Manager for the Sustainable Construction Group welcomed the delegates and introduced briefly the intention of the network and how BSRIA would like to engage with all stakeholders to help make residential development better.

The event was chaired by Richard Partington of Richards Partington Architects, architect advisor for the Zero Carbon Hub and co-chair of the steering group for their Performance Gap project.

The day started with a summary of the current policy context for energy efficiency standards in new homes and challenges and opportunities for low energy retrofits.

The recently concluded Performance Gap project for the DCLG provided a starting point for discussing issues that impacted new build residential developments. For this project, an extensive evidence gathering and review exercise was carried and over 60 issues were identified as contributing to the gap between the designed and measured energy use in homes.  Of these the ones prioritised for action and further research, along with the shortcomings in skills and knowledge highlighted through the end-to-end process review of over 20 new developments,  formed the core of the Hub’s recommendations to the Government.

Rick Holland was present to give an update on the Government’s continued support for funding research into construction processes via Innovate UK (previously Technology Strategy Board), both for domestic and non-domestic buildings.

A major programme from this funding stream looking at Building Performance Evaluation is coming to a close at the end of September and early stage findings from meta-data analysis were presented by Ian Mawditt of Fourwalls.  This focused on the common issues found with the design, installation and operation of MVHR systems and data from whole house co-heating tests. The final findings will be disseminated via Innovate UK and will include information from all projects across the seven funding tranches.

The analysis of key design specifications that would impact the performance of the mechanical ventilation systems raised some interesting observations about common assumptions made at early design stages.  Common themes from the commissioned air flow rates were also discussed.  The performance of homes built to Passivhaus standard was notably better, which emphasised the importance of process control on site, but also highlighted the fact that, when needed, the industry was able to deliver a high quality product (homes).

The presentations of the day concluded with a summary of how BSRIA would like to engage with its members to try and address various shortcomings identified through research.  Members are invited to put forward areas where there is a need for additional support, in the form of training, guidance and impartial technical expertise.

Calculator leaned on a little house with red roofA panel discussion was facilitated by the event chair in which a range of topics were discussed.  These included issues around the effective design, installation and modelling of district heating in residential and mixed use schemes and variations in standards and assumptions between the EU and the UK.  Ashley Bateson was able to provide an update on standards being developed by CIBSE.

The conflict between supporting innovative technology and the confidence in product and performance data to allow these to be accepted into mainstream and within compliance tools was also highlighted as an area of concern.

The impact of users on the actual energy performance in homes has not been included in some key research projects although in reality this has significant impact.  While this lies beyond the scope of a developer’s influence, key decisions about the complexity of services, controls interface and handover procedures all contribute towards the usability of homes.  Instances of how internet based tools and were successfully employed in some projects to engage with occupants to develop a feedback and learning mechanism were highlighted.

There were concerns voiced about the problem of overheating in new and newly refurbished homes, especially when dealing with vulnerable occupant groups like the elderly.  The Zero Carbon Hub are working on a project looking at the evidence and aim to help develop the assessment standards and methods for evaluating and mitigating risks in new homes.

BSRIA sees itself well-placed to engage with its members and the wider industry to help address the various shortcomings and areas of concern highlighted.  Subsequent network events have been planned to focus on specific topics in detail and we are seeking feedback from members to help structure our efforts in the most effective and useful manner.

Presentations from all speakers can be found on the networks page of the BSRIA website.

Safety in Building Services Design

This is a guest post by Richard Tudor of WSP

This is a guest post by Richard Tudor of WSP

Space, and the cost of providing space, for plant and building services  distribution is at a premium and designers often come under pressure to reduce the spatial requirements for building services installations. In order to discharge their obligations, designers must take care to provide safe means of access for installation, maintenance and equipment replacement.  In addition designers need to be aware of the regulations and legislation requirements that a design may impose on the installer and end user as a design solution can often impose additional legal

responsibilities, particularly in undertaking associated operation and maintenance activities. However, the active and continuing attention to safe access issues, throughout the design stages, is not always achieved as the designers’ attention can often concentrate on what is perceived to be more immediate concerns.

BSRIA’s publication Safety in Building Services Design BG55/2014 has just been published which provides guidance on designing for safety in both new and refurbishment projects.

The publication is aimed at designers and includes information on:

  • relevant legislation including CDM
  • hazards and risks including managing risk in the design process
  • understanding space requirements and access provision
  • designing for maintenance
  • plant room design
  • communication of risk information including representation of risk information on drawings
BG55/2014 Safety in Building Services Design

BG55/2014 Safety in Building Services Design

However, the diversity in type, configuration and possible location of plant, means it is not possible for this publication to give definitive guidance for all installations.

The publication provides a practical guide to assist the design process, aid design reviews together with providing a better understanding in designing for safety.  For example, included in the publication is a checklist on the considerations in designing for health and safety which can be used as part of the technical design quality review process.  In the pdf version of the publication this is included in an editable Excel format. Influencing factors, considerations and space requirement data useful in the design decision process with respect to providing safe access are highlighted in the publication.

The poor provision of safe access for maintenance could result in an increased likelihood of cutting corners or omission of maintenance and repair activities. This in turn, could result in building services failures that could adversely affect safety, legal compliance, productivity and quality of the environment.

BSRIA launches a new course on the 12th November 2014 providing guidance in designing for health and safety in the space planning of building services with respect to operation, maintenance and plant replacement. The course is intended for professionals involved in the design of building services but is equally relevant to contractors and other professionals within the industry. Young engineers in particular would benefit from the course.

On completion of the course delegates will be able to:

  • understand the specific considerations with respect to designing for safety for building services
  • identify discipline specific considerations in designing for safety
  • challenge designs in relation to health and safety in the design, construction and operations of building services so as to improve performance
  • understand relevant H&S legislation, codes of practice and guidance
  • understand the relationship between building services design and maintenance operations
  • understand the management of hazard and risk together with control strategies
  • locate information relating to health and safety to assist in design process
  • understand the consequences of failing to manage health and safety effectively
  • understand the importance of communication and provision of information in the design process

Richard Tudor is a Senior Technical Director at WSP and has been an integral part of the WSP Group Technical Centre for over 14 years. His responsibilities include technical quality, specification development, technical knowledge management, delivering training, designing for safety, providing technical support, and improving project delivery.

Designing for change

Ian Harman of Marflow Hydronics (BSRIA Members)

Ian Harman of Marflow Hydronics (BSRIA Members)

With the industry moving at such a fast pace, new innovations are being introduced all of the time. Manufacturers are inventing great new products that offer many benefits; solving the problems of the present to provide a better future. The biggest problem that they face, though, is launching these products on to the market. This is where BIM could really help. 

I think it’s fair to say that people don’t really like change. We like to stick to what we know and what we feel comfortable with. This seems to be the case in our industry. Many people, from consultants to installers, are still completing jobs and planning projects in the same way they’ve been doing it for years; that is in very traditional ways. A prime example is how there is still much use of two port control systems despite Pressure Independent Control Valves having been around now for quite a while. These newer products are faster to implement and more reliable in the long term, yet there is still a reluctance with some people to adopt the new technology.

It’s true that with any new product there’s inevitably a big learning curve to using them, and often training can be time consuming. There’s also the fear of risk. If people use a new product that they’re not so familiar with then there’s always the chance that it will go wrong. This could be because the user isn’t so experienced at using it, but also it could turn out that it wasn’t the ideal product after all and sometimes knowledge and experience can really help when making decisions. This is where BIM steps in.

Using BIM, manufacturers can create models, which I like to think of as ‘Lego blocks’, that they can send to customers to introduce them to a product. And they can do this long before any decisions have been made, at the very initial stages. The ‘Lego block’ would be a visually simplified model that not only clearly defines the spatial envelope and connection points, but also includes a wealth of ‘metadata’. This ‘metadata’ contains data fields specific to the particular products, such as flow rates for valves or electrical loads for powered devices.

BIM - Marflow Hydronics
That all means that clients can look at the products in detail and trial them in their plans from the very beginning. They will be given the time to properly analysis products and see how they will work within the system and how they will interact with other components.

By starting with the end in mind and properly understanding the system at the initial stage, it will help to future proof the project far down the line. It’s also the cheapest time to detect any issues. The easiest time to make a design or selection change is at the beginning of a project and BIM facilitates this in a much more user friendly manner than ever before. This would undoubtedly give them much more confidence in the products they’re looking to use and would, very importantly, remove that fear of risk.

BIM provides users with the time and ability to put much more thought into their projects earlier on, minimising that risk further down the line. This then increases the chance of far more successful project that works with the best products, potentially the latest and more developed ones, and there’s much more chance of it being on time and to budget.

BIM 2 - Marflow HydronicsManufacturers, like Marflow Hydronics, have been doing this to help bring new products into the limelight that otherwise customers may have been apprehensive about. More importantly, this has helped all parties get the right products specified when they may not have been otherwise. BIM may be the ideal solution to help us move more quickly into the future using more innovative products and having many of the niggling issues that have been around for so long vastly reduced, if not eliminated.

This was a guest post by Ian Harman, Technical Applications Engineer at Marflow Hydronics, BSRIA Member

If you are looking to find out more information about BIM, BSRIA runs two specific training courses:

There are also several other blog posts focused on BIM as well as a BSRIA BIM Network. 

Smartening up the City

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

There are some leaps in technology that seize the mind and imprint themselves indelibly on the memory. There can hardly be anyone over the age of 50 who doesn’t recall their grainy view of the first man on the Moon, and people who are quite a bit younger will remember when, say, paying a bill or booking a holiday online was still a novel experience.

There are other changes which, while they are already having far more impact on our lives than the Moon landings, seem to have crept up on us, almost by stealth. The advent of the Smart City looks very much like being one of the latter.

The Seminar Smart Cities and the Internet of Things, which BSRIA attended on 16th July, helped to flesh out some of these. One key factor is of course the sheer all-encompassing variety and complexity and scale of a modern city, as reflected in the technology required to support it. This was underlined by the presentations on the range of “smart” cities, from major building consultants, to companies working closely with utilities, to data analytics companies.

This points to a pluralistic approach where different companies collaborate, each contributing their own particular skills, rather than one where a mega-corporation tries to orchestrate everything.  As one speaker pointed out, the smart car alone is likely to involve motor manufacturers, battery and power specialists, grid utilities, digital IT specialists, and the advertising and public relations industry (interestingly, two of the three first people I spoke to represented public relations companies). And that is before one gets on to the subject of the role of city and national authorities.

While the seminar focussed, understandably, on the elements that comprise the “Internet of Things”, making up ‘the nuts and bolts’ of the smart city, it also convinced me that we need to pay more attention to the wider social, political and economic context.

What makes a city smart? Given the combination of complexity and subjectivity, that is always going to be a hard question to answer. Nonetheless a group of academic institutions did rank 75 smart cities across Europe based on the “smartness” of their approach to the economy, mobility, the environment, people, living and governance.

When I measured the ranking of smart cities in each country against that country’s average income, I was struck, but not that surprised, that there was an almost linear correlation between a country’s wealth, and the ranking of its ‘smartest’ city. Thus at one extreme Luxembourg, easily the richest country in Europe, and second richest in the world, was also judged to have the smartest city. Lowest ranked was Bulgaria, which also had the lowest per capita income of all the countries on the list. Most other countries were in a ‘logical’ position in between.

Smartening up the city

One can of course argue whether smart cities are mainly a cause or a consequence of a country’s wealth. Up until now I suspect it is mainly a matter of richer countries being able to afford more advanced technology, not least because the relative economic pecking order has not changed that much in the past 25 years, i.e.. since before the smart city era really got underway, indeed if anything the countries on the bottom right of our chart have been catching up economically, which could be why countries like Romania, Slovakia and Slovenia are doing better in the smart city stakes than their income might suggest.

Luxembourg is of course unusual in one other significant respect. In terms of size, and population, it is about the size of a city, and is politically and economically very much focussed on its eponymous capital city. This raises a question sometimes posed in other contexts: Is the “city state” making a comeback, and could this have a bearing on the development of the smart city? In this respect it surely speaks volumes that Singapore, probably the closest entity to a city state in the modern world is not only highly productive economically but frequently cited in the history of the smart city, going back to the days when it pioneered road pricing more than a generation ago, and one of the cities mentioned in this seminar.

If you are laying down the guidelines for a smart city then there are clearly advantages in having an authority with the resources and powers of a government, combined with the local knowledge and accessibility of a city.  But given that splitting up the world into hundreds if not thousands of new ‘city states’ does not look like a viable option, what can be done to create a framework in which smart cities can flourish in a way that is responsive to their citizens’ needs?

Even in larger countries, the Mayors of major cities are often heavyweight national figures, enjoying wide ranging  powers. This applies to cities like New York, Berlin, Paris and, more recently London. One of the most interesting developments in Britain is the growing recognition that while London is already in effect a global economic power, other cities have been struggling to keep up. While this problem long pre-dates the smart city, it speaks volumes that, with a general election due next year, all of the major parties are now committing to giving more powers to major cities outside of the capital, possibly with more directly elected mayors.

Given the nature of democratic politics there is still no guarantee that this will happen, especially given governments’ traditional reluctance to hand over power, but with Scotland likely to enjoy greater autonomy even if it votes to remain in the UK, the pressure to devolve more power to cities and regions in the rest of the UK will be that much greater.

Even this would not of itself promote smart cities, but it would mean that city mayors or leaders seeking to promote and coordinate smart city developments, and companies and interest groups looking for partners, would have much more powerful instruments within their grasp.

BSRIA’s Worldwide Market Intelligence team produces an annual report into Smart Technologies. To find out more go to our website

Is construction still a losing game for most women?

Julia Evans, BSRIA Chief Executive

Julia Evans, BSRIA Chief Executive

Politics is all about attempting to second-guess the mind of the electorate. Although cynics might cast a sceptical eye at the timing of the Cabinet reshuffle, the fact that women are more prominent in politics is a cause for celebration. After all, women make up 52% of Britain’s population, so increasing female ministers to around a quarter of the Cabinet (6 out of 17) is a belated step in the right direction1. But when there are so many talented women, why is it that more of them don’t achieve high office?

Before we cast too may stones, we in the construction industry need to have a good look in the mirror. Women make up just 11% of the workforce and our industry’s lack of progress towards equality is shameful. Aside from the lack of diversity, from a practical perspective, with one in five workers soon to reach retirement the industry needs to increase its skilled workforce. It needs to thus start attracting and retaining talented professionals regardless of gender, age or ethnicity (needless to say, ethnic minorities are also under-represented in construction2).

Women have struggled to get an equal footing in construction, but the representation of women in our industry has waxed and waned in recent history, demonstrating that, left to chance, both government leadership and the fluctuating demands for skilled labour can be persuasive. Perhaps Nicky Morgan, the new Minister for Women and Equalities ought to have something to say about this too.

According to the Office for National Statistics (ONS), the number of women who work as roofers, bricklayers and glaziers is currently so low as to be essentially unmeasurable. It hasn’t always been like this. In the 18th century, women in Britain worked as apprentices “in a host of construction occupations, including as bricklayers, carpenters, joiners and shipwrights”. However, by the early 19th century, with changes in legislation and new divisions of skilled/unskilled labour, women became increasingly excluded. By 1861 trades including that of carpenter, plumber, painter, and mason, were subsequently largely ‘male’3.

The First World War led to a marked increase in women in the building trades through a government agreement with the trade unions which “allowed women into skilled male jobs as long as wages were kept low and they were released at the end of the war”. During the second world war, there was similarly an estimated shortage of 50, 000 building workers, so the National Joint Council for the Building Industry agreed that employers should identify whether any men were available first before a role was filled by a woman (who earned, on average, 40% less their male counterparts—and it’s still not perfect now, with women earning c10% less4). The bias of the apprenticeship systems and trade unions were largely responsible for the fact that women in the building industry declined once more from the 1950’s to ‘70s3.

We’re currently back to the issue of a lack of available skilled labour. The government recognises this, and I welcome the recently announced BIS funding call specifically designed to help women progress as engineers. The funding will support employer-led training to encourage career conversions and progression in the industry. This call is in response to a recent report identifying that “substantially increasing the number of engineers would help the UK economy […] and the potential to significantly increase the stock of engineers by improving the proportion of women working in engineering jobs”5.

Carbon Comfort event 14th March-lowFunding new training opportunities is a great step forward, but to see real change we need industry leaders to be proactive in embedding a more diverse and inclusive work culture. The majority of women aged 25-45 find that attitudes, behaviours and perceptions are the greatest barriers3.

If you feel there is nothing new in the story, then the words ‘ostrich’ and ‘sand’ come to mind. It is about you. It’s about you and how you and your business behave now, not just when we have the time given that the recession is over and it’s a ‘nice to do’.

So, inspirational leadership—and not just policy—will foster a more inclusive and skilled workforce. Look around you. How many women are in senior management roles? What is your office culture really like? Is your organisation progressive or part of the problem? And, most importantly, what are you going to pledge to do about it?

1 Reshuffle 2014: Women control one in four pounds of government spending. Huffington Post, 15 July 2014

Inquiry into Race Discrimination in the Construction Industry, Action Plan. Equality and Human Rights Commission, 2010

3 Building the future: women in construction, The Smith Institute, 2014

Gender pay gaps 2012. David Perfect, Equality and Human Rights Commission Briefing Paper 6.

 Employer ownership: developing women engineers,BIS, 23 June 2014

Why do women leave architecture? Ann de Graft-Johnson et al., 2003.

If you are interested in careers at BSRIA then please check out our website. We also have an extensive training programme covering topics like BIM and the Building Regulations. 

The selection criteria of refrigerants

Salim Deramchi, Senior Building Services Engineer at BSRIA

Salim Deramchi, Senior Building Services Engineer at BSRIA

This is part two of a three part series from Salim. You can read part 1 here

There is no general rule governing the selection of refrigerants, however there are of course the five classic criteria and those are:

  • thermophysical properties
  • technological
  • economic aspects
  • safety
  • environmental factors

However, in addition to these criteria, others have to be considered such as local regulations and standards as well as maintainability and ‘cultural’ criteria associated with skills to support the units, application, and user training requirements.

The best approach when presenting evolution and trends is certainly the per-application approach. The desirable characteristics of “ideal” refrigerants are considered to be:

  1. Normal boiling point below 0°C
  2. Non-flammable
  3. Non-toxic
  4. Easily detectable in case of leakage
  5. Stable under operating conditions
  6. Easy to recycle after use
  7. Relatively large area for heat evaporation
  8. Relatively inexpensive to produce
  9. Low environmental impacts in case of accidental venting
  10. Low gas flow rate per unit of cooling at compressor

The choice of alternative refrigerants should involve a review of recycling or disposal of refrigerants. You must decide which criteria for the ideal refrigerant is of most importance to your organisation. It must be considered that the operation phase is the key factor when determining the environmental impact of the various refrigerants as there is less impact to the environment in the production and disposal stages. As an example, supermarket retailers are steadily moving away from long-established HFC refrigeration systems.

Decision making for new refrigeration plant using refrigerant alternatives such as ammonia, CO2 or hydrocarbons, which have comparatively little or no impact on global warming and zero impact on ozone layer, should consider not only the impact on the environment but the additional required skills to maintain (Ko Matsunaga).

You can  find out more information in BSRIA’s library

A forward thinking attitude to energy management

Chris Monson, Strategic Marketing Manager of Trend

Chris Monson, Strategic Marketing Manager of Trend

Given that in parts of the world like Europe and North America some 40% of all energy used is consumed by buildings, both companies and wider society are increasingly focussing on the energy performance of their buildings, and how to improve it.

Building Energy Management Systems (or BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance. 

I’m Chris Monson, strategic marketing manager at Trend Control Systems, and I’d like to welcome you to the latest in a series of blogs where I, along with my colleagues, examine the issues affecting the building controls industry and the use of Building Energy Management Systems (BEMS).

It strikes me as somewhat bizarre that in an age where owners, managers and occupiers of commercial premises are under tremendous pressure to operate as energy efficiently as possible, so few developers recognise the long-term value of installing a fully featured BEMS at the construction stage. Such is the value and relevance of this technology, that to my mind it should be considered as important as other elements of the building services infrastructure that are designed in as a matter of course.

BEMS facilitate greater energy efficiency and the cost savings and the environmental benefits that can be experienced as a result of investment in this technology are considerable. A fully integrated solution can have up to 84 per cent of a building’s energy consuming devices directly under its control, offering greater visibility of energy use by monitoring services such as heating, ventilation, air conditioning (HVAC) and lighting.

According to the Carbon Trust 25 per cent of a building’s energy is used in lighting, and it is estimated that around a third of the energy consumed in this way in non-domestic buildings could be saved by utilising technology that automatically turns off lights when space is unoccupied. In addition, air conditioning can increase a building’s energy consumption and associated carbon emissions by up to 100 per cent, making it imperative that its use is tightly controlled.

So why isn’t the design and installation of a BEMS happening in the initial stages of a construction project? I’m afraid that the answer comes down to a combination of cost and lack of foresight. However, to fully understand why these two factors are proving so prohibitive to BEMS implementation, we need to understand a little more about the mind-set of the developer.

Developers tend to fall into two broad groups – there are those that configure buildings for others to inhabit and others who design and build premises for their own use.

When it comes to the former, the main driver is to save costs at the construction phase and little thought is given to the building’s future occupants and how they use the building. As there are no regulations stating that a BEMS must be installed, there’s a strong possibility that it won’t be. However, this lack of forward thinking leads to future occupants having to cope with inadequate visibility and control of their energy usage and, therefore, higher overheads and a larger carbon footprint.

Regarding the second group, it often comes down to the failure of owners to specify the need for a BEMS at procurement stage and make sure that they have systems in place that will maximise the energy saving potential of the building. While this type of developer will also have one eye on the cost of the project, the increased capital costs of installing BEMS is easily countered by the return on investment (ROI), with an average payback of just three and a half years.

Whichever way you look at it, the fact is that on a ROI basis early stage BEMS implementation makes sound economic sense. It can form less than one per cent of the total construction expenditure and energy savings of 10-20 per cent can be achieved when compared to controlling each aspect of a building’s infrastructure separately. The benefits don’t stop there either, as if it is incorporated with smart metering, tariff changes can be used to offer a strategic approach to energy management and control, and the data produced gives clear signposts for potential improvements.

I firmly believe that in the current business climate to construct a new build property without a comprehensive BEMS borders on foolhardiness. Organisations are faced with growing pressure to demonstrate carbon reduction policies and do all they can to lower their energy use.

Despite the controversy surrounding the introduction of the CRC Energy Efficiency Scheme, it is here to stay and is likely to extend its scope to incorporate more businesses in the future. In addition, The Climate Change Levy (CCL), Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs) also affect businesses, while compliance with certification standards such as ISO 50001 put the onus on companies to demonstrate continual improvement in this area.

It should also be remembered that building occupiers are demanding greater visibility and transparency of their energy consumption and need access to data. A failure to meet this demand could mean that prospective tenants decide to go elsewhere.

Standardisation is playing an ever more prominent role and the most significant is EN 15232, which describes methods for evaluating the influence of building automation and technical building management on the energy consumption of buildings. It enables building owners and energy users to assess the present degree of efficiency of a BEMS and provides a good overview of the benefits to be expected from a control system upgrade. The use of efficiency factors means that the expected profitability of an investment can be accurately calculated and I’m pleased that a growing number of organisations are reviewing this document and implementing some of the best practice guidance it offers.

There are those who feel that regulation is the only way to make sure that BEMS are installed at the point of initial construction, although others are reluctant to see the introduction of more onerous legislation on an already pressured construction sector. At this stage I think that regulation shouldn’t be necessary if a long-term approach to energy efficiency is factored in and the benefits of a BEMS are recognised by more developers in the initial stages of a project.

Trend_RGB SMALLFor further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report – Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Best & Worst Practices Please!

Julia Evans, BSRIA Chief Executive

Julia Evans, BSRIA Chief Executive

BSRIA recently held a workshop on behalf of DECC identifying priorities to promote low carbon heating and cooling in non-domestic buildings as part of the development of its low carbon heat strategy.  Attendees were drawn from both the Young Engineers and Energy and Sustainability BSRIA networks.  Personal thanks to AECOM’s Ant Wilson for chairing the event.

It was a busy day.  It recognised that both new and existing buildings have a pivotal role in reducing greenhouse gas emissions, and by 2050 one of the key requirements will continue to be how we provide heating and cooling.

BSRIA’s Peter Tse and Ian Orme both gave excellent presentations which drew on both good and poor practices identified from more than 50 independently assessed case studies.  These, I felt, answered the questions “what does good practice look like”, as well as “what are the consequences when its not followed”.

The workshop session resulted in many suggestions as to priorities for the future.  There were a couple which caught my eye.

In response to the suggestion that one of the priorities for DECC should be identifying independently assessed best practice and developing exemplars of new technologies, a number of delegates felt that instances of “bad practice” were even more helpful.  It seemed to me that a priority for at least a part of the audience was to know what to avoid doing.  Perhaps this reflects the industry’s receptiveness to messages about risk, and that we often learn most when we make mistakes.  The emphasis on “independent assessment” also resonated.  Many have become sceptical about instances of self-identified “best practice”, and BSRIA’s independent guidance on what works, and what does not, is there to assist the industry do things better.

Another of the workshop themes was on “skills shortages”.  After many years of recession, construction companies have euphemistically “right sized”, and this means that we have lost a lot of great talent from the industry.  Now that there are green shoots of recovery in construction, there is already talk of an exacerbated “skills gap”.  This gap makes it even more challenging for the industry to deliver buildings which meet the needs of their occupiers and where innovation is required to help tackle climate change, and meet the UK’s commitment to “zero carbon” and “very low energy” buildings. This reminded me of another of BSRIA’s strengths – training provision.

BSRIA's 2014/15 Training Brochure

BSRIA’s 2014/15 Training Brochure

Finally there was an astute observation that our recent quest for low carbon buildings has meant that we have worried less about the efficient use of energy, with the net outcome that we can end up with an EPC A rating for carbon design, but a DEC G rating for energy in use.  The move to policies that move us to buildings which are both zero carbon and nearly zero energy use will hopefully remedy this, although I suspect this particular journey may contain further unintended consequences before we reach that goal.

The workshop identified many requirements if we are to create environmentally conscious buildings that meet user needs, and importantly maintain these elements over the life of the building.

BSRIA’s mission remains to “make buildings better”.  As part of my role, I’m listening to our members and the industry what they expect from BSRIA.  I’d like to extend this offer to you, so if you have ideas about BSRIA’s future role, please send them to me: Julia.evans@bsria.co.uk.

To learn more about the BSRIA workshop you can download all the presentations from our website. 

The “Seven pillars of (BIM) wisdom”

In 2011 the report for the Government Construction Client Group defined Level 2 BIM as being:

“Managed 3D environment held in separate discipline “BIM” tools with attached data….”

However, as a consequence of ongoing development of the processes and tools available, and feedback from early adopter projects and other industry experience, the Government has recently refined its definition of Level 2 BIM as having the following seven components:

  1. PAS 1192-2:2013 is available to download for free from BSI

    PAS 1192-2:2013 is available to download for free from BSI

    PAS 1192-2:2013 Specification for information management for the capital/delivery phase of assets using buildinginformation modelling

  2. PAS 1192-3:2014 Specification for information management for the operational phase of assets using building information modelling
  3. BS 1192-4 Collaborative production of information. Part 4: Fulfilling employers information exchange requirements using COBie – Code of practice (due to be published Summer 2014)
  4. Building Information Model (BIM) Protocol
  5. GSL (Government Soft Landings)
  6. Digital Plan of Work (in preparation)
  7. Classification (in preparation)

 

1. PAS 1192-2:2013 builds on the processes described in BS 1192-2007, and introduces new concepts such as employer’s information requirements (EIR) – the employer’s expression what information they require from the project and the format it should be in, and BIM execution plans (BEP) – the supply chain’s response to the EIR showing how it will meet its requirements.

Read more of this post

Buildings – Plugging the Performance Gap

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

What do The Titanic, London’s Millennium Bridge, and The Leaning Tower of Pisa have in common? One answer is that as structures they all failed to “perform” as expected. The Titanic, designed with the latest technology to achieve a success  rate of approximately 100% safe Atlantic  transits, actually achieved a disappointing 0%. The Millennium Bridge, fine and inspiring though it was, failed to take account the consequences of perfectly natural, if little understood, human behaviour – the tendency to walk in sync on a naturally moving structure – with potentially alarming consequences. It had to be radically re-engineered before reopening in 2002.

The Leaning Tower of Pisa, which I was able to climb last month, failed in the most fundamental requirement of most buildings – staying permanently upright – though in some-ways of course this very failure was the secret of its long term success and certainly the main reason that people like me still pay good money to climb it more than 800 years after it first started leaning.

When buildings fail to deliver the intended results, we talk about a “performance gap”. While this can embrace many areas including cost, safety and comfort, we tend to talk about this particularly where energy performance is concerned. This reflects the fact that energy performance is at least ostensibly a goal of most of those involved in the design, construction and management of buildings, and that as energy prices rise and concerns over the impact of greenhouse gas emissions become more acute, the sense of urgency can only increase.

Some of the reasons for this are highlighted in a useful new book “How Much Energy Does Your Building Use?” by Liz Reason (Dō Sustainability) whose launch I attended in London last week. The book highlights examples of buildings initially hailed as energy efficient which spectacularly failed to live up to their reputation. It also shows how these failings can emerge at any stage of the building process from initial planning and design through construction, commissioning and occupation and operation, and considers how these problems and shortcomings can best  be addressed and avoided.

What I want to focus on here is one central question: How do we know how our building is actually performing, let alone how it is likely to perform in future? The key here is information, which needs to be collected and then analysed, not just to show us any obvious performance issues but also point to potential problems or just unusual patterns that deserve further investigation and explanation.

This points to a central role for Building Energy Management Systems (BEMS). These are offered by a wide range of suppliers, including most of the major Building Automation providers, and present wide ranging functionality. Central to almost all of them is the collection and analysis of data, sometimes in prodigious volumes. A well implemented BEMS enables you to keep track of what your building is actually doing, irrespective of what it was intended or expected to achieve.

'Performance gaps' in buildings are nothing new...

‘Performance gaps’ in buildings are nothing new…

Another way in which the performance gap points towards BEMS is that while the value of BEMS has been widely recognised for some time in the retrofit market, especially for the huge mass of buildings constructed in 1960 – 1990, there has sometimes been a tendency to assume that more recent buildings, being generally built to much higher standards, can, to a degree, “look after themselves”. If a building really is “zero energy” then what is there to manage, at least from an energy point of view?

However, if there are basic failings in the design itself, the way it has been implemented or commissioned, or the way the building is operated in relation to its actual usage, then the performance gap can loom up large and un-ecological as a fire-breathing dragon. Sometimes the failings can be obvious: a stiflingly uncomfortable office can jump up and hit you as much as a wildly wobbling bridge. But in other instances, energy wastage is less obvious. Real performance issues emerge only when the actual data is collected and analysed over time.

This month BSRIA publishes the latest update of the study “BEMS Market 2014 Q2 :Developments in Europe and the USA”, a study which, with its regular quarterly updates, helps you to keep up to speed with the newest developments in this exciting and important area.

Follow

Get every new post delivered to your Inbox.

Join 58 other followers

%d bloggers like this: