The practicalities of classification in a BIM Level 2 environment

I first raised the issue of classification in the BSRIA blog back in March 2014 – my, how time flies.  As you would expect (or at least hope) things have moved on and there are some issues within the general world of classification which are worth raising, particularly in the context of BIM Level 2 with the UK Government’s mandate almost with us.

Current classification systems commonly used in construction typically work at ‘system’ level.  The highest level of classification is for a group of system types eg in CAWS (Common Arrangement of Work Sections).  This level is represented by a single letter: ‘S’ represents Piped Services, a category including systems such as Cold Water, Natural Gas, etc.

However, most classification systems available have an inherent flaw – they are not capable of classifying at a multi-services level, something that is common in the world of MEP.  In CAWS language, there needs to be a way of combining mechanical systems and electrical systems under a single heading, as the various mechanical systems are combined under the Piped Services ‘S’.

The success of information management depends heavily on the ability to retrieve a piece of information once generated.  BS 1192:2007+A1:2015 details a method for naming information files, and consists of a number of mandatory and optional fields.  The following extract from BS 1192 shows all the fields, together with their obligation – ‘Required’ or ‘Optional’.

John Sands Jan blog

Using this process would result in a file name (a similar process can be used for drawing numbers) as follows.  I have ignored the last two fields – Suitability and Revision – for the moment, and I’ll explain why later:

PROJ1-BSRIA-00-ZZ-RP-H-T31-00001

In this example, the CAWS classification system has been used, giving T31 for Low temperature hot water heating system.  And this is my point (finally, I hear you say) – the classification field is the only part of the file string which tells the recipient what the subject of the file is.  In future, when searching for information about a particular aspect of a project in the information repository, this classification code is the best way to identify relevant content.  Therefore, I feel it is vital that the classification field is used for all file names in order to make the information available for future use.  This reuse of information is where efficiency increases are realised and errors reduced by not having to reproduce information over and again.

Now, suppose that the report in the above example was the building services scheme design report, covering all mechanical, electrical and public health systems.  Which classification could be applied for that topic?  This takes us back to the point I made at the start of this article – for any classification system to work effectively it needs to be able to represent multi-services applications.

The classification system chosen for use in the UK Government Level 2 BIM requirements is Uniclass 2015, a development of Uniclass 2 which was produced by CPIC (Construction Projects Information Committee).  Uniclass 2015 has been prepared by NBS as part of an Innovate UK research competition won by their parent company RIBA Enterprises, and consists of a number of individual classification tables.   Although this is the classification system chosen to take us into Level 2 and beyond, it does not appear to be capable of meeting at least one fundamental requirement – the ability to deal with multi-services applications.

Don’t get me wrong.  This issue is not new and is certainly not confined to Unicalss 2015.  CAWS couldn’t handle multi-services classification either, but it was hoped that a new system, developed specifically for BIM, would provide the answer.  BSRIA has been raising this issue, both in its own name and as part of CIBSE initiatives, since Uniclass 2 was released.  Throughout the development of Uniclass 2015 we have raised a number of queries about the arrangement and capability of the format, but on this particular point we are still waiting for a meaningful response.

Whilst I’m at it, here’s another thing to think about.

As I mentioned earlier, the success of an information management system – for that’s what BIM is – is the ability to retrieve information once created.  The file naming convention described in BS 1192:2007+A1:2015 described above goes a long way in enabling this but there are some points of concern with its approach.

A document or file may be superseded a number of times in its life, and BS 1192 describes the process for moving that superseded file into the ‘Archive’ area of the information store.  This ensures that the complete history of the project is retained for future reference.  However, the way the successive versions are named is causing a little concern in practice as more people start to use these methods on live projects.  This is where those last two fields I conveniently ignored above come into play.

Historically, we have managed revised and superseded documents by using revision codes – in most cases a single letter after the final number (PROJ1-BSRIA-00-ZZ-RP-H-T31-00001A using the previous example).  This additional letter distinguishes each version of the same base document, and also has the added benefit of changing the file name to allow it to be saved whilst remaining recognisable.   The two remaining fields in the BS 1192 extract above appear to provide this facility within the BS 1192 approach.

However, the guide to BS 1192 (Building Information Management – A Standard Framework and Guide to BS 1192) states that:

Recommendation: status and revision should not be included as part of the file name as this will produce a new file each time those elements are updated, and an audit trail will not be maintained.

This doesn’t appear to be a very sensible approach to me.  You cannot save multiple versions of a file with the same name, so the addition of the revision letter to the file name is a simple and workable solution.  This might seem like a small or trivial issue in the big world of BIM, but it’s the sort of thing that could stop the widespread uptake of an otherwise very worthwhile file naming approach.

BSRIA has posted several blogs on the topic of BIM that can be read here.

Lighting: the low hanging fruit of energy efficiency

Peter Hunt, COO, the Lighting Industry Association

Peter Hunt, COO, the Lighting Industry Association

Rising efficiency standards in LED technology and falling purchase prices mean that businesses can now expect a shorter pay-back on their investment according to Peter Hunt, chief operating officer at the Lighting Industry Association.  We caught up with him ahead of the launch of the lighting hub at edie Live 2016 which will showcase the latest developments in energy-efficient technology.

Energy-efficient lighting products are particularly well suited to retrofitting applications, explained Hunt, due to the minimal disruption they cause to building fabric, and recent improvements in LED technology. “LEDs have undergone a rapid technological evolution over the past few years and have become a much more fitting replacement for earlier light sources,” he said. “Older LEDs produced a very blue light, but modern LEDs have advanced to the point where you would be hard-pushed to tell the difference.”

“Efficiency has also continued to improve. If you’re comparing the output of LEDs with traditional commercial technologies such as halogen lamps, then the energy savings are now about 80%. At the same time prices have been tumbling. They’ve fallen 20% for three consecutive years. Lighting products that were quite expensive are now much more affordable.”

Nevertheless, a reduction in energy costs is not the only motivation for installing an energy efficient lighting system, he continued. “What many businesses overlook is the extended lifespan of new lighting technologies. Many modern LEDs can last up to 50,000 hours, compared with 2000 hours for halogen lamps. That’s 25 lamp replacements, plus the expense of calling out a maintenance engineer, which can often cost more than the lamp itself. For large commercial applications the savings can be immense.”Improved return on investment means there is now a strong business case to switch to new technology according to Hunt: “A three-year break-even period a few years back, could now be as short as a year or less. Lighting really is the low-hanging fruit of energy-efficiency.”

Surprisingly however, the largest savings that energy-efficient lighting can offer may in fact come from HR budgets. “There’s been quite a lot of research into the link between lighting and wellbeing,” observed Hunt. “Working under light that is too bright, too dim or the wrong colour has been shown to negatively affect health.”

national

Energy-efficient lighting systems can help to maintain a consistent, high-quality level of illumination, explained Hunt. “The latest systems can dim down lights closest to windows when the sun is shining, for example. They also have the capacity to adjust the colour temperature of light throughout the day to match natural human biorhythms, promoting a more restful night’s sleep.”

This is a point Sara Kassam, head of sustainability at the Chartered Institute of Building Service Engineers, agreed with during an interview with edie Live: “With businesses typically spending 1% of their budgets on energy and 90% on staffing costs, many are realising that the big incentive for installing energy-efficiency technology may not actually be the cost of energy, but the potential it has to make staff more comfortable and productive in the workplace”.

Equally, many business leaders are recognising the potential risks from inaction on energy consumption, she explained. “Shareholders want to see a business being run efficiently. Operating outdated and wasteful technology is not good when you’re looking for wider investment.”

“Energy-efficiency is also important in terms of your business’ energy security,” Kassam cautioned. “Wider political issues are creating uncertainty about what will happen to energy prices in three to five years’ time.”

“Becoming as efficient as possible now cushions your business against that risk,” she advised. “After all, the cheapest unit of electricity is always the one you don’t spend.”

BSRIA is pleased to support edie LIVE.

edie LIVE, formerly Sustainability Live, is the UK’s leading energy, sustainability and resource efficiency exhibition for business end-users.  It connects public and private sector energy and sustainability professionals with the information, suppliers and ideas that can make their business more sustainable.

To explore the latest developments in energy-efficient lighting technology, join edie Live at the NEC Birmingham, 17 -18 May 2016.

Being a Young Engineer

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

What is it like to be a young Engineer?

I think it’s fair to say the term Engineer in itself is very broad so for the purpose of this blog my focus is my discipline, Building Services Engineering.

So how did I become an Engineer? Through my love of maths and problem solving, I chose to study a common entry Engineering Degree in Dublin Institute of Technology. Following the first year of Maths, Applied Maths, Physics and Chemistry, I then chose the Building Services route as it seemed the most interesting to me and it was. It offered modules in a wide range of subjects from lighting design, fire engineering to smoke control and acoustics. As well as the heating, cooling and ventilation design as you would expect.

I graduated in 2010 from Dublin Institute of Technology to a bleak construction industry in Ireland so I looked elsewhere and succeeded in getting a job here at Cudd Bentley in Ascot. Since graduating and entering the workplace as a Consultant Engineer, no two days have been the same, each week offers new challenges and the range of projects I have been involved in has been exciting. Projects I have been involved in range from retail to residential, shopping centres to extensive refurbishment projects. I work as part of a team and although I am mainly office based, I regularly visit site to carry out inspections or for Design Team meetings, offering an enjoyable diversity to my job.

Quite quickly into my career I realised my interest in the area of Sustainable Engineering Design and with the support of my company, Cudd Bentley Consulting, I have completed a range of courses including CIBSE Low Carbon Energy Assessor, Elmhurst On Construction Domestic Assessor and Bentley Hevacomp modelling course to allow me to be proficient in thermal modelling and a Low Carbon Consultant. I really enjoy building modelling and have had the opportunity to work with some interesting models here at Cudd Bentley. I use my models to generate a variety of outputs including heat loss and heat gain calculations, energy and carbon saving potential, overheating analysis, Energy Performance Certification and Part L Compliance.

Sustainability is an area that I am particularly interested in and this year I have begun an MSc in Renewable Energy in Reading University. I enjoy learning and I don’t think I will ever be finished learning. Topics which I am particularly interested in currently are Nuclear Energy and the Feed in Tariffs Scheme for solar energy. I think it will be a real shame if the Government chose to drastically reduce the Feed in Tariff Scheme. I am also eager to see what will come from the Climate Change Conference, COP21, in Paris this month.

I have been attending events for the BSRIA Young Engineers Network for the past five years and I was delighted to be asked to be the Chairwoman of the Network this year. I would encourage all young Engineers to attend as it gives a unique opportunity to meet experts in their field, discuss current topics with your peers and to network with fellow young Engineers.

I was fortunate to be surrounded by highly experienced Engineers from the beginning of my career and one piece of advice I would offer every young Engineer is to immerse yourself in the knowledge of those people around you with such experience as well as making sure to put your own young and fresh approach to it where appropriate. The industry is constantly changing and it’s important to be constantly evolving.

Being a young Engineer is challenging, exciting and for me a fantastic career.

COP 21 – Success or Failure

This blog was written by Richard Hillyard, a Senior Environmental Consultant

This blog was written by Richard Hillyard, a Senior Environmental Consultant

Well, we have a climate change agreement for 2020 and beyond in the Paris Accord, approved this weekend.  But is this an adequate level of progress needed to seriously tackle the problem of climate change?  Compared to 6 years ago and the utter failure in Copenhagen, first glance suggests yes, but it’s not perfect.

Two weeks ago leaders from around the world gathered for probably the most important and significant international government conferences of our time, COP21. Prior to these talks, Non-Governmental Organisations (NGO’s), campaigning organisations, environmentalists and individuals from all over the world took to the streets to protest and generate an atmosphere of urgency for a strong positive agreement to be achieved.

COP21 started with an inspiring speech of HRH Prince of Wales calling to arms the politicians of the world to take responsibility and deliver an agreement that will start the progress to reduced CO2 emissions and planetary stability. “On an increasingly crowded planet, humanity faces many threats, but none is greater than climate change. It magnifies every hazard and tension of our existence… It threatens our ability to feed ourselves, to remain healthy, and safe from extreme weather, to manage the natural resources that support our economies, and avert the humanitarian disaster of mass migration and increasing conflict.”

This was followed by leaders of each country all making the same points, using strong rhetoric, all pointing out the obvious and what the informed already know.  The rhetoric from the politicians had a passion and sincerity on a level that I had not heard before.  Could Paris and COP21 be the success the world and its people need it to be?

Barack Obama, a driving force in these discussions, determined to leave behind a Presidential legacy before he steps down, not worried about re-election stated “the future is on that we have the power to change – right here, right now… One of the enemies we will be fighting is cynicism – the notion that we can’t do anything about climate change” urging a “common purpose [for a] world that is not marked by conflict but by co-operation”, concluding “Lets go to work.”

One of the few blemishes being David Cameron stating, “what would we say to our grandchildren if we failed. We would have to say it was too difficult, they would reply, well what was so difficult?… How can we argue that it’s difficult when in London alone there’s 5 trillion of funds under management and we haven’t already begun to generate the private finance that is possible to help tackle climate change?”

Highly contentious in my view, as it is him and his government that are cutting financial support for clean and renewable energy and instead pushing for shale gas fracking with a very questionable UK energy policy.

Following the opening day, the media lost interest and there was practically no coverage in the mainstream media during the 2 weeks of discussions.  However, from what was available, it was clear there was a hive of activity between the main discussions, informal meetings and fringe campaigns that appear to have been running 24/7. Such is the complexity over agreement of document text, working groups were giving paragraphs to negotiate with each country.

From the start, the French leadership were doing their job perfectly, they communicated a sense of direct urgency and urged the UN to deliver an approved agreement.  In the latter part of  the second week the ‘High Ambition Coalition’ represented, a group of 100 countries, who have been working in the wings secretly for half a year. They helped to push policy agreements through late in the day and on Saturday the world finally got to hear what was agreed.

Not only a commitment to limit global warming to 2oC change, but also to aim to reduce it further to 1.5oC.  This is highly ambitious, yet committed unilateral agreed target., seeing as the world is already heading to a 1oC degree increase in global temperature, limiting it by another half a degree is some target to have agreed.

There are a few challenges with this target, and where the Paris Accord shows cracks, there is no time frame except for ‘second half of the century’ and there are no real mechanisms agreed to ensure delivery of this target, just a promise.  But this is a start, to seriously tackle climate change and hopefully the beginning of releasing the world from its fossil fuel addition.

The agreement includes a legally binding 5-year review of countries targets, and the ability for them to improve their objectives to work towards a low carbon future.   However, 5 years is a long time, long enough for the world leaders not to be in power next time around and be held accountable.  Considering the target of 1.5 degrees, this time frame is not feasible, the reviews are important and are legally binding but should have been annually or every 2 years to ensure targets and commitments are being delivered in a time frame that will actually limit temperature increases. Additionally, how will this be policed and by whom to ensure accountability by nations?

It is also worth noting that the terms ‘fossil fuels’, ‘oil’, ‘coal’, and ‘gas’ do not appear once in the text of the Paris Accord. It looks like corporate lobbying has played a part in the delivery of this final text, which is a real shame as the document should of at least acknowledged the link between the use of these finite resources, their link to GHG emissions and climate change.

Developing countries already receiving financial aid for assisting them with the effects of climate change, all feel they need further support from the countries already causing climate change and in many cases rightly so. This was a contentious area in the negotiations and Saudi Arabia caused a lot of problems due to their economy largely dependent on oil.  But none the less, an agreement of $100bn base line annual aid would be made available.  Many NGOs and commentators believe this to be a significant failure in the process as more help is needed from the developing world to mitigate the effects as well as evolve their economies to the new low carbon energy infrastructure needed.

Listening to the French Foreign Minister Laurent Fabius, their Prime Minister, Francois Hollande, and head of UN, Ban Ki-moon speaking on Saturday morning was for me emotional, are we on the brink something truly incredible as they would have us believe or is the Paris Accord another ‘empty promise’ with no substance to actually deliver?  In the hours and days that have passed, I have had time to reflect and take it all in, I am optimistic and definitely more positive about the international political landscape in this area than I have been for a number of years.  COP21 has managed to get an agreement from nearly 200 countries and this should be applauded long with the target and legally binding reviews.

As Ban Ki-Moon stated, there had to be compromise, no one got 100% of what each country wanted at the start of the negotiations.  I think this is also true from the environmental campaigning, activist and NGO perspective with the agreement not delivering on a level that many believe is required, not going in to detail on how targets would be achieved and not committing enough to help those who will suffer first and most with the effects of climate change.

Wholesale system change doesn’t happen over night, we know this and I believe no matter what would have been agreed in Paris, to many, myself included, it would not have been enough and open for criticism.

Expectation is high and its easy to pick holes in the agreement.  What needs to done, is to reflect and look at the outcomes differently – There is an agreement approved, there is a target agreed, there are legally binding elements and there is some financial aid. I would of taken that 2 weeks ago and I think many others would.

Paris and COP 21 is not the end of the road when it comes to climate change, it is the beginning of the next part of our worlds environmental and climate journey.  The targets are in place, the leadership of the world is agreed that limiting GHG emissions is critical to success.  In fact just 24 hours after COP 21, the UK governments energy policy is already being scrutinised by politicians and media, an early indication of positivity from the Paris talks.

It is now up to us, the environmentalists, the activist and the environmentally considered to continue to drive for delivery against promises, hold those who fail to account and keep on the pressure to those who stand in the way of climate revolution, at the same time, applaud and celebrate where there have been successes and victories. The optimist in me tells me that Paris and COP21 was one of those victories and successes. So let’s embrace it and make it work for our future and the planet.

This blog post was written by Richard Hillyard MSc. Pg Dip. BA(Hons). AIEMA. Richard is a Senior Environmental Consultant at a major international property management company with 13 years environmental and energy experience, including the provision of CRC, ESOS, EED, EUETS compliance, CDP and Carbon Standard Reporting as well as EMS implementation and management. Prior to this, Richard was part of the FM consultancy team with BSRIA and also holds a MSc in Environmental Decision Making.

Goodbye BIM… Hello digital

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

When BIM first reached the masses in about 2010 it was exciting: finally the construction industry wakes up to the 21st century and embraces the ability of computers to take on our more mundane tasks and improve communication! A data-centric approach to managing projects meant that appointments would be clearer, design computation could yield instant feedback, models would feed directly into fabrication robots and building operators could simply and efficiently access all the information about their assets at the click of a button.

However in 2015 there seems to be a wide spread consensus that BIM is just an expensive, less flexible way of delivering projects, and sadly the acronym is often a sure fire way of clearing a room.

So beyond the UK government’s level 2 BIM deadline in April 2016 there is no “level 3 BIM”; instead it is “digital built Britain”. And the industry is following suit; let’s remove this acronym with too much baggage and stigma and get down to what it really means: sensible data management, better quality communication of design intent, easier and more effective collaboration, and many opportunities to do things more quickly and accurately.

When thinking about “digital” rather than “BIM”, we find ourselves asking a more straight forward question: what can computers and data do for us?

Firstly, computers are capable of recording vast amounts of data and processing it very quickly, but to date they’re not so good at the more creative stuff; that’s what people are for. So it follows that we can “outsource” a lot of our thinking time to a processor by offloading the more mundane, repetitive tasks, leaving our creative minds to focus on the more interesting things. Good technology should allow people to spend less time alone staring at a computer!

As an example, BREEAM is a way of addressing a very important aspect of our building design (environmental impact) but is often seen as a time-consuming form filling exercise. This is a terribly boring thing for a human to do, but provides essential information in a usable common structure. This is exactly what computers are good at, so let’s automate this important but boring compliance process so that humans can get on with doing the interesting important tasks.

Ben Roberts blogWe are now also capable of doing things that were previously impossible or impractical. Virtual reality and augmented reality are now becoming cheaper and easier; anyone with a smartphone has a choice of free apps to upload your 3D models, and if oculus rift is outside your budget, try google cardboard for just £6! The MX3D Amsterdam bridge project is proving that 3D printing is not just for small objects; perhaps entire pipework systems could be printed on site too? Many other emerging technologies are presenting completely new options: reality capture, the internet of things, cloud computing, wearable technology and visual scripting are just a few examples.

Secondly, data can be very informative if you know what to do with it. Buildings can potentially generate enormous amounts of data, and in the right hands that can quickly be used to assess energy performance, make comparisons of different technologies, or identify faults in building systems, for example.  Raw data is daunting, but visualisation of that data is easy and provides a more immediate form of interpretation. As 2 examples, graphs and infographics are clear methods of showing key statistics and are easily generated in Excel, and 3D models give an intuitive interface to accessing associated data at various stages in a project lifecycle.

Finally, you don’t have to be a computer scientist to use a computer these days – my grandad is 95 years old and controls his heating remotely using his iPad. Much of the software available for design, construction and operation of buildings is going this way too. Virtual reality is a good starting point for the technologically averse, but there are plenty of other technologies that offer simple solutions for anyone.

So I encourage you all, upon hearing the acronym “BIM”, not to run for the hills but to simply consider what computers and data can do to help you.

Ben is a chartered mechanical engineer and holds the position of BIM Delivery Leader for Hoare Lea, a role which involves pushing the boundaries of software tools and enabling teams to deliver BIM projects as efficiently and effectively as possible around the practice in the UK and Middle East. He specialises in using BIM models for design calculations. Ben is an active member of the CIBSE BIM steering group, the BSRIA BIM Network, and is involved in developing many industry standards for MEP BIM delivery. He has written articles for a variety of construction industry journals on the subject of BIM, and regularly presents and lectures on the subject around the world.

Just when you thought it was safe to relax about Energy

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Did you hear about the crisis that hit the UK on 4th  November, causing  massive disruption, and provoking outcry in industry, and suddenly sent energy rocketing back up the UK’s political agenda?

You probably didn’t hear this, because the first major threat to the UK’s national grid this winter still left it with a princely 2% spare capacity, sufficient for the National Grid to issue a “notification of inadequate system margin” (NISM), but insufficient to actually disrupt the service.

While this was only the first stage of alert, and while an abnormal lack of wind was an aggravating factor – bringing the UK’s now significant wind generation capacity almost to a halt, one of the mildest starts to November on record may have helped to save the day. As so often in human affairs, a “near miss” is treated as a near non-event. A single “hit” on the other hand could have major repercussions, prompting much more urgent action not just on the resilience of the UK’s national grid, but on how buildings respond to peaks and troughs in energy demand.

BSRIA has been reporting and analysing on Building Energy Management and the issues around it for a number of years now. One of the trends that we have noticed is that over time, more suppliers of building energy management solutions include some form of Demand Response as part of their solution. This enables a temporary reduction in the power drawn by certain services in the building where this does not impact on productivity or well-being.

Our latest review of the global leaders in Building Energy Management showed that almost half now offer demand response, the highest figure that we have seen to date. This includes both the global leaders in Building Automation and Energy Management and suppliers specialising in energy management.

At the same time, energy storage is being taken more serious as a viable and cost-effective way of providing additional resilience and peak capacity, both for energy suppliers and in some cases for consumers. While the UK is still some way from having a thriving market in home energy storage systems comparable to that developing in Germany (where residential electricity is significantly more expensive), it seems quite likely that any significant grid outages will give a boost to the market for battery storage for both residential and non-residential use.

It is still quite hard to judge how probable a major power outage is in the UK this winter. There are already further processes for demand reduction which can be invoked if the situation gets tighter than it did on November 4th. However a coincidence of severe cold with a lack of wind, and unplanned outages at power stations is not inconceivable. And the major strategic initiatives, such as the construction of two new nuclear power plants, will take years to come online.

The UK has got used to ‘living dangerously, and so far has got away with it. But the sensible response to a lucky escape is to learn the lessons, and  not to assume that your luck will go on holding indefinitely.

The very least we can say is that all organisations should be looking at the potential implications of even a short interruption to power supplies, and how they can best mitigate these.

I shall be talking a bit more about BSRIA’s latest research into building energy management and related areas in a webinar on Tuesday 24th November, so I hope that you will be able to join me then

A loveliness of ladybirds

This blog was written by BSRIA Graduate Engineer Joe Mazzon

This blog was written by BSRIA Graduate Engineer Joe Mazzon

Do you know the collective noun for a group of ladybirds?

It’s a loveliness, cute isn’t it! Why do I know this?

My MSc dissertation was entitled The Mechanics of Insect Adhesion, I worked with both Asian Weaver Ants and an assortment of British ladybirds, I looked after a batch of each, a colony of Ants and a loveliness of ladybirds.

I was researching the strong adhesive forces associated with insect species, Ants are seen every day carrying objects such as leaves and twigs that are many times their own bodyweight, the very nature of the tiny beings lends them enough equivalent muscular strength per unit size to perform amazing feats of strength. But carrying these masses up vertical walls and across the underside of horizontal surfaces opens up a whole new world of incredible biological engineering

There is a famous picture of an Asian Weaver Ant suspended from a glass ceiling holding a 500mg weight between its jaws. This creature is supporting 100 times its own body weight upside down from a very smooth glass surface, the forces on its tiny feet are incredible and it was my job to look into them

I wanted to find out just how much force the ants could withstand, basing my research on previous studies from Cambridge I constructed an extremely efficient centrifuge to which I could attach discs of various materials and spin them to high rotational velocities.

I used an upside down pillar drill and a plastic box.

No really, my extremely advanced scientific equipment came from the scrap pile of the university workshop, now that’s a testament to frugal engineering.

I would take a specimen, place him on the disc and turn the drill on, slowly at first, steadily increasing the speed of rotation until the ant would detach and fly onto the protective outer casing. The whole process was videoed from above using a high speed webcam. The result, after carefully rescuing the little guy and putting him back into his enclosure, was a video of a black blur that formed a circle, I could measure the diameter of the circle at the moment of detachment (when the black blur disappeared) match that distance to the angular velocity and calculate a force of detachment.

The same process was used for the ladybirds although the blur generally had a slightly red tinge and the noise of a ladybird hitting a Perspex wall at high velocity was surprisingly louder than you may think.

I should make the important point that none of the insects were actually harmed in the making of this dissertation, part of my job was to care for the health of my specimens. I had a small loveliness that needed to be kept in good health for testing, I read as much biology as I did physics for the project, I even learnt how to sex ladybirds which is incredibly hard to an untrained eye.

Our results successfully agreed with the literature, our ants were holding on to the glass substrate at 100 times the force of their own body weight.

In an attempt to understand the physical mechanism of the adhesion we tested different glass coverings, some hydrophobic and some hydrophilic, the suggestion was that some insects would secrete a liquid to maximise the surface area of their feet in contact with the substrate, we postulated that a hydrophobic surface, one that water doesn’t stick to, would show a decrease in the adhesive potential of the animal, our results couldn’t prove such a fact but they did strongly suggest it.

Most people I share this story with assume that ants feet are the same as Gecko feet in that they adhere using tiny hairs that maximise surface area in contact with the surface, this is not true. Ants utilise small hairs on some aspects of their feet but not for adhesion, instead they have a thin fleshy pad that unfolds from between two, toe like claws that then molds itself to the surface. This pad, called the Ariola, is what makes the ants stick to surfaces.

As a relatively new graduate engineer at BSRIA I am still attempting to find an application of this knowledge to the building service industry, I’m not sure that I will achieve this goal but I will keep looking.

So there we go, a loveliness of ladybirds, how’s that for a nice thought for the day.

This article is the first in a series written by members of BSRIA’s Young Engineers Network. The author of this piece is Joe Mazzon who recently joined BSRIA as one of our Graduate Engineers. You can find out more about the Young Engineers Network on our website. If you would like to find out more about this blog series then please contact our Information Manager Jayne Sunley

University of Reading Research Study: Indoor Environmental Quality and occupant well-being

Gary Middlehurst is a post-graduate student at the University of Reading's School of Construction Management and the Technologies for Sustainable Built Environments

Gary Middlehurst is an Engineering Doctorate (EngD) student at the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE)

Looking at a new approach for determining indoor environmental quality (IEQ) factors and their effects upon building occupants, BSRIA has provided the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE) Centre access to their Bracknell office building known as the “blue building”.

 IEQ factors are proven to affect occupant well-being and business performance, however, for the first time, actual environmental and physiological field measurements will be compared. New research therefore has been developed by the University of Reading, which will seek to understand these relationships and the potential impacts of known IEQ factors on perceived levels of occupant satisfaction and well-being.

Understanding fundamentally how IEQ factors can affect building users, will allow system designers to finally visualise occupant well-being, personal satisfaction and productivity as part of a holistic business performance model. Based upon empirical measured IEQ factors and surveyed occupant data, the research hypothesis proposes that high-density occupation can reduce office workplace environmental footprints significantly when physiological impacts are understood.

The research methodology brings together measured environmental characteristics, physiological performance measurements, POE survey responses, and then uses an Analytic Hierarchy Process (AHP) to assess existing workplace designs.

Gary Middlehurst blogReducing operational costs and increasing occupant satisfaction and well-being is seen as a distinct competitive advantage, however, businesses remain focused towards meeting the challenges of energy security, demand side management and carbon commitments. The research, therefore, will provide empirical data to create informed business decisions focused upon these challenges. This is done by increasing the importance of well-being and by defining performance as a key metric.

Field research is currently underway on the top floor within the “blue building”, where 4 willing volunteers are participating in physiological sensory measurements and POE response surveys. The project will be running for 12-months, with the initial current 2-week data acquisition period being repeated a further 3 times during winter, spring and summer of 2015/16.

The research is also being conducted at two other similar office environments in Manchester and London, and seeks to support the hypothesis that hi-density workplaces are a further sustainable step in designing and operating more efficient and effective intelligent buildings.

The Building Services/Engineering ‘BIM Readiness’ Survey

BECA_strapSRIA is delighted to be supporting a sector-wide BIM survey which has been launched by the Electrical Contractors’ Association (ECA), alongside the Chartered Institution of Building Services Engineers (CIBSE) and Building, the UK’s leading magazine for construction professionals.

The new study will explore the readiness of the building services sector to engage with BIM within the next six to 12 months. The survey is also supported by other leading players in the sector, including the British Electrotechnical and Allied Manufacturers’ Association (BEAMA).

The investigation is expected to reveal crucial information about how prepared the sector is to adopt ‘BIM Level 2’ practice, noting the government requirement for BIM Level 2 engagement with centrally procured contracts during 2016.

BSRIA’s Principal Consultant and BIM specialist, John Sands, commented:

“With the implementation of the UK Government’s Level 2 BIM mandate just a few months away, the building services industry should be in a position to make the most of the opportunities it will present. This survey will help us all to identify where we are in the BIM journey, and to enable us to plan the way forward to BIM maturity.”

ECA Director of Business Services, Paul Reeve, said:

“This sector-wide survey will provide much needed and very timely information on how ready the building services sector is to engage with BIM as we approach the 2016 government deadline.

We urge all building services companies to take part in the new survey, and we will be sharing the data with the industry, the Government and other stakeholders when the results are in during September 2015.”

CIBSE Technical Director, Hywel Davies, added:

“Government is committed to using BIM to improve its management and operation of buildings and infrastructure. Mechanical, electrical and plumbing services are all critical to the effective operation of buildings. Our sector is involved in the operational life and performance of built assets, not just the design and delivery. This survey is important for our sector to understand how well prepared we are for BIM.”

The BIM study will run until September 15. 

Notes to readers:

More information about BIM (Building Information Modelling)

• ‘Level 2 BIM’ is the process of working with digital building information, including data-rich objects, which can be effectively shared between those who are building and/or maintaining the building and its services. This is ‘collaborative 3D BIM’ and it involves using tools such as COBie, BS/PAS 1192, ‘Soft Landings’ and various BIM Protocols.

• The Government aims to require collaborative 3D BIM on its centrally procured projects by spring 2016 (BIM Level 2), in order to unlock innovation and benefits throughout the building project life-cycle, including cost savings.

About the Electrical Contractors’ Association (ECA):

The Electrical Contractors’ Association (ECA) is the UK’s largest trade association representing electrical, electrotechnical and other engineering contractors, at regional, national and European level. ECA member-companies are rigorously assessed before membership is approved.

BSRIA relaunches Topic Guides

Construction compliance 3BSRIA is pleased to announce the relaunch of our information topic guides with the first release of this ‘At a Glance’ series TG07/2015 At a Glance – Airtightness available to download from the BSRIA website now.

The BSRIA Topic Guides are designed to be an at a glance publication introducing readers to key industry topics and suggesting further reading. BSRIA’s Information Centre is relaunching them with the aim of providing an introduction to key topics in the industry providing readers with an understanding of the area and how they can learn more. A new addition to the topic guides will be a feature by a BSRIA expert on the subject, offering a fresh insight. The airtightness topic guide features an insight into the legislation by our expert David Bleicher.

BSRIA’s Information and Knowledge Manager Jayne Sunley said ‘The topic guides are a great way of providing members and non-members alike with good information that will hopefully clarify some of the questions they have about topics they are new to, they’re not designed to be an all-encompassing guide but rather a starting point for anyone looking to learn more. The addition of the expert insight is just a way of showing readers that there is more to the topic than they might have first thought’.

TG07/2015 At a Glance – Airtightness offers readers a view of why airtightness is important for our building stock and how a building can be tested. It is now free to download from the BSRIA website for members and non-members alike.

Future 2015 titles in the At a Glance series will include Legionella, Data Centres and Smart Technology.

Follow

Get every new post delivered to your Inbox.

Join 68 other followers

%d bloggers like this: