Balometer Calibration: Why It Matters

Balometer Calibration

Before diving into calibration and why it matters, let’s first understand what a balometer is and why it’s essential. In the world of HVAC (Heating, Ventilation, and Air Conditioning) and indoor air quality management, precision is key. Accurate airflow measurements are crucial for maintaining a comfortable, energy-efficient environment and diagnosing system performance issues.

What are Balometers?

Balometers, commonly known as Flow Capture Hoods, play a pivotal role in balancing indoor airflows. Entrusted with the crucial task of measuring and regulating airflow within our buildings, these instruments are the go-to tools for HVAC technicians, building engineers, and indoor air quality professionals. They help ensure that air distribution systems are functioning optimally, preventing issues such as uneven heating or cooling, inadequate ventilation, and poor air quality. To maintain the accuracy and reliability of balometer readings, regular calibration is essential.

Why is calibration important?

Calibration is important because it helps ensure accurate measurements, and accurate measurements are foundational to the quality, safety and innovation of most products and services we use and rely on every day. If you look around, most of what we see was produced within tight measurement specifications assured by calibration.

When it comes to balometers, precision is paramount. These devices are responsible for gauging airflow rates with accuracy, ensuring that ventilation systems operate at their best. Inconsistent or inaccurate readings could lead to imbalanced airflow, which, in turn, affects indoor air quality, energy efficiency, and overall comfort.

Here’s why calibration is important:

  • Precise airflow measurements are crucial for efficient HVAC systems.
  • Regular calibration ensures compliance with regulations, promoting health and safety.
  • Accurate airflow measurements support energy-efficient HVAC operation.
  • Calibration serves as preventative maintenance, minimizing downtime and extending equipment lifespan.
  • Reliable data from calibrated balometers supports effective system management.

Summary

In the world of indoor air quality and building performance, Balometers are indispensable tools. They ensure that the air we breathe is clean and that our indoor spaces are comfortable and safe. But their effectiveness relies on their accuracy, which is maintained through regular calibration.

So, the next time you breathe in clean, comfortable air indoors, remember that behind the scenes, balometers and their calibration are silently working to make it all possible. In the world of HVAC, where precise airflow measurements are vital for maintaining comfort and energy efficiency, regular balometer calibration is not a luxury; it is a necessity.

In response to the growing emphasis on air quality within the built environment, BSRIA is pleased to announce an expansion of its service portfolio, with the introduction of a cutting-edge airflow Calibration Rig at its North facility in Preston, Lancashire. This is alongside the existing rig at BSRIA Bracknell, both rigs are officially endorsed by UKAS (United Kingdom Accreditation Service).

Find out more about air quality at the BSRIA Air Quality Hub.

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

BSRIA and our approach to BIM

As part of an upcoming BIM blog series following on from the Open BIM REC webinar series BSRIA answered the following questions.

What has been the key to your success with BIM?

The key to a successful BIM project, based on our current experience, has been using a procurement method which promoted truly collaborative working.  It can be difficult when each party is employed against their own particular scope to ensure everyone works together.  One party may have to decide to do either what is best for the project or what they have been specifically employed to do – these are not always compatible.

How many BIM projects have you been involved in?

We have been involved in one project which has reached site which is trying to adopt BIM Level 2 throughout the project duration.  The project is currently on site and is due to complete in July 2017.

Where was your greatest BIM challenge to start with and what shortcuts are available now (if any) that were not available when you started on your BIM journey?

The greatest challenge was to convert the BIM Level 2 documents into working project processes.  There is a huge gap between the BS/PAS 1192 documents etc. and working project practices and procedures and the amount of effort involved to achieve this shouldn’t be underestimated.

The instances of useful and practical information and tools to enable BIM Level 2 requirements to be incorporated into real projects have not materialised. Some of the tools provided by the Government do not work in practice.  As a result, a more flexible approach to BIM Level 2 is being put in place.

How can industry ensure that clients receive the full benefits of BIM?

The best way for the industry to ensure that clients receive the full benefits of BIM is to listen to the client.  The industry is focussed on telling the client what they will get based on their own skills (often modelling skills rather than true BIM Level 2 capabilities), and too often they don’t look at how the client will use the information generated through the project in the operation of the asset once handed over.

What else can be done to help improve collaboration within the construction industry?

The best way to improve collaboration within the construction industry is to use a form of procurement which truly promotes collaborative working. We’ve been reviewing Integrated Project Insurance as one method and can see some real benefits.

To find out more about BSRIA’s BIM services and advice please visit our website. We also have a collection of BIM blogs by our BSRIA experts. 

BSRIA’s Model Format for Building Services Specifications and UniClass 2015

bg-56-2016-model-format-specificationTo reflect the importance of specifications in the construction process, in 2015 BSRIA published its guide BG 56 Model Format for Building Services Specifications.  The guide stressed the need to present specifications in an effective and consistent format, and working groups representing designers and installers co-operated to produce a model format for specification content.

The format developed consisted of the following five parts:

  • A Preliminaries
  • B Project specific requirements
  • C Project specific materials and equipment
  • D Common workmanship and materials requirements
  • E Tender deliverables

Within the project specific parts, the content indexes have been arranged to present the correct level of information in the order it will be required by the specification user.

Classification has been used in construction for many years as a way of grouping similar information together, and identifying content about a particular topic.  This has been particularly effective within the building services sector with the use of CAWS (Common Arrangement of Work Sections), resulting in recognisable codes such as T31(low temperature hot water heating) being used as a form of shorthand to describe particular engineering systems in specifications, design reports and on drawings.

BG 56 has now been updated to include references to the recently resolved classification system for use in BIM Level 2 applications – UniClass 2015.  For most specification instances, the two main UniClass 2015 tables to be used will be Systems (Ss) and Products (Pr).

Additional appendices have been included to provide examples of how UniClass 2015 may be used in specifications to identify particular engineering systems or equipment.  Appendix F shows UniClass 2015 codes for a selection of typical equipment items found in workmanship and materials sections of engineering specifications.  Appendix G contains an example of a complete specification index using the model format, with UniClass 2015 codes included where appropriate.

The practicalities of classification in a BIM Level 2 environment

I first raised the issue of classification in the BSRIA blog back in March 2014 – my, how time flies.  As you would expect (or at least hope) things have moved on and there are some issues within the general world of classification which are worth raising, particularly in the context of BIM Level 2 with the UK Government’s mandate almost with us.

Current classification systems commonly used in construction typically work at ‘system’ level.  The highest level of classification is for a group of system types eg in CAWS (Common Arrangement of Work Sections).  This level is represented by a single letter: ‘S’ represents Piped Services, a category including systems such as Cold Water, Natural Gas, etc.

However, most classification systems available have an inherent flaw – they are not capable of classifying at a multi-services level, something that is common in the world of MEP.  In CAWS language, there needs to be a way of combining mechanical systems and electrical systems under a single heading, as the various mechanical systems are combined under the Piped Services ‘S’.

The success of information management depends heavily on the ability to retrieve a piece of information once generated.  BS 1192:2007+A1:2015 details a method for naming information files, and consists of a number of mandatory and optional fields.  The following extract from BS 1192 shows all the fields, together with their obligation – ‘Required’ or ‘Optional’.

John Sands Jan blog

Using this process would result in a file name (a similar process can be used for drawing numbers) as follows.  I have ignored the last two fields – Suitability and Revision – for the moment, and I’ll explain why later:

PROJ1-BSRIA-00-ZZ-RP-H-T31-00001

In this example, the CAWS classification system has been used, giving T31 for Low temperature hot water heating system.  And this is my point (finally, I hear you say) – the classification field is the only part of the file string which tells the recipient what the subject of the file is.  In future, when searching for information about a particular aspect of a project in the information repository, this classification code is the best way to identify relevant content.  Therefore, I feel it is vital that the classification field is used for all file names in order to make the information available for future use.  This reuse of information is where efficiency increases are realised and errors reduced by not having to reproduce information over and again.

Now, suppose that the report in the above example was the building services scheme design report, covering all mechanical, electrical and public health systems.  Which classification could be applied for that topic?  This takes us back to the point I made at the start of this article – for any classification system to work effectively it needs to be able to represent multi-services applications.

The classification system chosen for use in the UK Government Level 2 BIM requirements is Uniclass 2015, a development of Uniclass 2 which was produced by CPIC (Construction Projects Information Committee).  Uniclass 2015 has been prepared by NBS as part of an Innovate UK research competition won by their parent company RIBA Enterprises, and consists of a number of individual classification tables.   Although this is the classification system chosen to take us into Level 2 and beyond, it does not appear to be capable of meeting at least one fundamental requirement – the ability to deal with multi-services applications.

Don’t get me wrong.  This issue is not new and is certainly not confined to Unicalss 2015.  CAWS couldn’t handle multi-services classification either, but it was hoped that a new system, developed specifically for BIM, would provide the answer.  BSRIA has been raising this issue, both in its own name and as part of CIBSE initiatives, since Uniclass 2 was released.  Throughout the development of Uniclass 2015 we have raised a number of queries about the arrangement and capability of the format, but on this particular point we are still waiting for a meaningful response.

Whilst I’m at it, here’s another thing to think about.

As I mentioned earlier, the success of an information management system – for that’s what BIM is – is the ability to retrieve information once created.  The file naming convention described in BS 1192:2007+A1:2015 described above goes a long way in enabling this but there are some points of concern with its approach.

A document or file may be superseded a number of times in its life, and BS 1192 describes the process for moving that superseded file into the ‘Archive’ area of the information store.  This ensures that the complete history of the project is retained for future reference.  However, the way the successive versions are named is causing a little concern in practice as more people start to use these methods on live projects.  This is where those last two fields I conveniently ignored above come into play.

Historically, we have managed revised and superseded documents by using revision codes – in most cases a single letter after the final number (PROJ1-BSRIA-00-ZZ-RP-H-T31-00001A using the previous example).  This additional letter distinguishes each version of the same base document, and also has the added benefit of changing the file name to allow it to be saved whilst remaining recognisable.   The two remaining fields in the BS 1192 extract above appear to provide this facility within the BS 1192 approach.

However, the guide to BS 1192 (Building Information Management – A Standard Framework and Guide to BS 1192) states that:

Recommendation: status and revision should not be included as part of the file name as this will produce a new file each time those elements are updated, and an audit trail will not be maintained.

This doesn’t appear to be a very sensible approach to me.  You cannot save multiple versions of a file with the same name, so the addition of the revision letter to the file name is a simple and workable solution.  This might seem like a small or trivial issue in the big world of BIM, but it’s the sort of thing that could stop the widespread uptake of an otherwise very worthwhile file naming approach.

BSRIA has posted several blogs on the topic of BIM that can be read here.

Goodbye BIM… Hello digital

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

When BIM first reached the masses in about 2010 it was exciting: finally the construction industry wakes up to the 21st century and embraces the ability of computers to take on our more mundane tasks and improve communication! A data-centric approach to managing projects meant that appointments would be clearer, design computation could yield instant feedback, models would feed directly into fabrication robots and building operators could simply and efficiently access all the information about their assets at the click of a button.

However in 2015 there seems to be a wide spread consensus that BIM is just an expensive, less flexible way of delivering projects, and sadly the acronym is often a sure fire way of clearing a room.

So beyond the UK government’s level 2 BIM deadline in April 2016 there is no “level 3 BIM”; instead it is “digital built Britain”. And the industry is following suit; let’s remove this acronym with too much baggage and stigma and get down to what it really means: sensible data management, better quality communication of design intent, easier and more effective collaboration, and many opportunities to do things more quickly and accurately.

When thinking about “digital” rather than “BIM”, we find ourselves asking a more straight forward question: what can computers and data do for us?

Firstly, computers are capable of recording vast amounts of data and processing it very quickly, but to date they’re not so good at the more creative stuff; that’s what people are for. So it follows that we can “outsource” a lot of our thinking time to a processor by offloading the more mundane, repetitive tasks, leaving our creative minds to focus on the more interesting things. Good technology should allow people to spend less time alone staring at a computer!

As an example, BREEAM is a way of addressing a very important aspect of our building design (environmental impact) but is often seen as a time-consuming form filling exercise. This is a terribly boring thing for a human to do, but provides essential information in a usable common structure. This is exactly what computers are good at, so let’s automate this important but boring compliance process so that humans can get on with doing the interesting important tasks.

Ben Roberts blogWe are now also capable of doing things that were previously impossible or impractical. Virtual reality and augmented reality are now becoming cheaper and easier; anyone with a smartphone has a choice of free apps to upload your 3D models, and if oculus rift is outside your budget, try google cardboard for just £6! The MX3D Amsterdam bridge project is proving that 3D printing is not just for small objects; perhaps entire pipework systems could be printed on site too? Many other emerging technologies are presenting completely new options: reality capture, the internet of things, cloud computing, wearable technology and visual scripting are just a few examples.

Secondly, data can be very informative if you know what to do with it. Buildings can potentially generate enormous amounts of data, and in the right hands that can quickly be used to assess energy performance, make comparisons of different technologies, or identify faults in building systems, for example.  Raw data is daunting, but visualisation of that data is easy and provides a more immediate form of interpretation. As 2 examples, graphs and infographics are clear methods of showing key statistics and are easily generated in Excel, and 3D models give an intuitive interface to accessing associated data at various stages in a project lifecycle.

Finally, you don’t have to be a computer scientist to use a computer these days – my grandad is 95 years old and controls his heating remotely using his iPad. Much of the software available for design, construction and operation of buildings is going this way too. Virtual reality is a good starting point for the technologically averse, but there are plenty of other technologies that offer simple solutions for anyone.

So I encourage you all, upon hearing the acronym “BIM”, not to run for the hills but to simply consider what computers and data can do to help you.

Ben is a chartered mechanical engineer and holds the position of BIM Delivery Leader for Hoare Lea, a role which involves pushing the boundaries of software tools and enabling teams to deliver BIM projects as efficiently and effectively as possible around the practice in the UK and Middle East. He specialises in using BIM models for design calculations. Ben is an active member of the CIBSE BIM steering group, the BSRIA BIM Network, and is involved in developing many industry standards for MEP BIM delivery. He has written articles for a variety of construction industry journals on the subject of BIM, and regularly presents and lectures on the subject around the world.

The Building Services/Engineering ‘BIM Readiness’ Survey

BECA_strapSRIA is delighted to be supporting a sector-wide BIM survey which has been launched by the Electrical Contractors’ Association (ECA), alongside the Chartered Institution of Building Services Engineers (CIBSE) and Building, the UK’s leading magazine for construction professionals.

The new study will explore the readiness of the building services sector to engage with BIM within the next six to 12 months. The survey is also supported by other leading players in the sector, including the British Electrotechnical and Allied Manufacturers’ Association (BEAMA).

The investigation is expected to reveal crucial information about how prepared the sector is to adopt ‘BIM Level 2’ practice, noting the government requirement for BIM Level 2 engagement with centrally procured contracts during 2016.

BSRIA’s Principal Consultant and BIM specialist, John Sands, commented:

“With the implementation of the UK Government’s Level 2 BIM mandate just a few months away, the building services industry should be in a position to make the most of the opportunities it will present. This survey will help us all to identify where we are in the BIM journey, and to enable us to plan the way forward to BIM maturity.”

ECA Director of Business Services, Paul Reeve, said:

“This sector-wide survey will provide much needed and very timely information on how ready the building services sector is to engage with BIM as we approach the 2016 government deadline.

We urge all building services companies to take part in the new survey, and we will be sharing the data with the industry, the Government and other stakeholders when the results are in during September 2015.”

CIBSE Technical Director, Hywel Davies, added:

“Government is committed to using BIM to improve its management and operation of buildings and infrastructure. Mechanical, electrical and plumbing services are all critical to the effective operation of buildings. Our sector is involved in the operational life and performance of built assets, not just the design and delivery. This survey is important for our sector to understand how well prepared we are for BIM.”

The BIM study will run until September 15. 

Notes to readers:

More information about BIM (Building Information Modelling)

• ‘Level 2 BIM’ is the process of working with digital building information, including data-rich objects, which can be effectively shared between those who are building and/or maintaining the building and its services. This is ‘collaborative 3D BIM’ and it involves using tools such as COBie, BS/PAS 1192, ‘Soft Landings’ and various BIM Protocols.

• The Government aims to require collaborative 3D BIM on its centrally procured projects by spring 2016 (BIM Level 2), in order to unlock innovation and benefits throughout the building project life-cycle, including cost savings.

About the Electrical Contractors’ Association (ECA):

The Electrical Contractors’ Association (ECA) is the UK’s largest trade association representing electrical, electrotechnical and other engineering contractors, at regional, national and European level. ECA member-companies are rigorously assessed before membership is approved.

BSRIA BIM Network event review – Delivering the Level 2 BIM tools

John Sands blog 1BSRIA’s BIM Network focusses on bringing particular issues around BIM to its members in an informal environment.  As part of this mission, it has previously held two events specifically looking at the Innovate UK (formerly Technology Strategy Board) competition to provide the missing Level 2 BIM components – the digital plan of work (dPoW) and the classification system, all wrapped up in a user-friendly on-line tool.

The competition was won by RIBA Enterprises, with a team including NBS, BIM Academy, BDP, Laing O’Rourke, Microsoft, Mott MacDonald and Newcastle University.  The period of the initial delivery phase was six months with a due date of mid-April.

This topic was first looked at in the Network in February 2014 when the competition was about to be launched, and a second event in September reported on progress and the outcome from the second stage of tendering.

The latest event, held on 21st April 2015, was timed to follow hot on the heels of the launch by RIBA Enterprises.  As it turned out, a beta version was the subject of a ‘soft’ launch, made at the BIM Show Live on the 8th April, with the ‘hard’ launch now planned for some time in June.  The contract calls for RIBA Enterprises to ‘maintain’ the product (known as the BIM Toolkit – but more about the title later) for five years so development is expected to continue.

Almost thirty people attended the half day event, and represented a wide cross section of the built environment industry with designers, constructors, manufacturers and utilities suppliers all taking part.

The format for the event was very simple, with the aim being to give as much time for debate as possible.  Following a brief introduction from the chairman, Rob Manning from the Government’s BIS BIM Task Group gave a presentation describing the background to the UK Government’s Level 2 BIM requirement, and to the Innovate UK competition.

John Sands 2Rob’s presentation ran through eight key themes, all seen as vital to enabling effective Level 2 BIM:

  1. The Level 2 BIM journey
  2. Consistent work stages
  3. The Employer’s role
  4. Innovate UK project – A digital tool for building information modelling
  5. Digital Plan of Work
  6. Classification
  7. Validation tool
  8. Multi mode access

The first three items demonstrated the need for BIM Toolkit, and the remaining topics explained the requirement contained within the Innovate UK competition.

Sarah Delany of RIBA Enterprises then gave a presentation on the Toolkit, giving some background to the project from RIBA Enterprises’ perspective, and demonstrating its main features.  The presentation looked at the various features of the Toolkit, against the backdrop of the project phases identified in PAS 1192-3:2013:

  • Assessment and need
  • Procurement
  • Post-contract award and mobilisation
  • Production
  • Following hand-over then “in-use”

The BIM Toolkit is a project-based tool.  As well as the usual project information, the tool lets the user input data and assign roles at each stage of the project (the RIBA 2013 Plan of Work is used).  Certain key themes are displayed in the pane on the left hand side (see red box in the image below) which can be completed for each stage.

John Sands 3The Toolkit also incorporates a classification structure (Uniclass 2015), and a data validation facility, although these weren’t included in the presentation.

There was a lot of information to take on board and the coffee break after the last of the presentations was welcomed by all.  It also gave the audience a chance to collect their thoughts and frame some telling questions.

As was expected, the questions were wide-ranging, from how the tool affected what information manufacturers were expected to produce, to how the tool was intended to be used.  This latter enquiry highlighted a key aspect of the tool, which had previously been misunderstood – at least by us.  One of the MEP constructors asked if the tool was meant to be hosted in the project environment, where all members of the team would be able to see it.  Rob Manning’s response was that the tool was meant to be used by the client, who would then export it into another environment for use by the project team if required.  The same person then asked if it was in fact a tool for the client and Rob Manning said that was indeed the case. We must admit that at that point we were struggling to see the collaborative element of the Toolkit.

The name of the tool also raised some questions.  Given that it was for the use of the client, someone asked if the name of Toolkit was perhaps not as helpful as it could be.  Rob Manning said in response that perhaps the name may need to be reconsidered.  Someone in the audience suggested that EIR Writing Tool or Briefing Tool may be more appropriate.

BSRIA is considering holding a similar event in early June.  This will give the industry another opportunity to ask questions once they have had a chance to look at the Toolkit in more detail, and consider how it relates to their working environment.  This will also act as useful feedback to RIBA Enterprises at the end of the beta testing period and help to shape the new release, currently due sometime in June.  In the meantime, BSRIA agreed to take any comments attendees may have between now and June and feed them back to RIBA Enterprises.

In summary, it was good to see the BIM Toolkit and to hear the Government client’s aspirations.  Also, it is worth bearing in mind how much has been achieved in such a short space of time.  However, we think that there is a lot of work still to be done to get the beta version to what was intended in the original competition brief.  It will be interesting to see how the June release has progressed.

Have a look at the beta version of the BIM Toolkit (www.thenbs.com/bimtoolkit) and send any comments to RIBA Enterprises.  It’s important to have your say and to help make the final output of real value to the construction industry.

BSRIA provides one-day training courses to introduce BIM and how to implement a BIM plan.  Visit https://www.bsria.co.uk/information-membership/events/ for more information

Nearly there – delivering the Level 2 BIM tools. Will they be what we were expecting?

We are just a few weeks away now from the first deliverables from the Innovate UK’s competition to deliver the last two key components of UK BIM Level 2 – a digital plan of work (dPoW) and an industry-wide classification system.  The ‘soft’ launch is scheduled for the 8th April 2015 at the BIM Show Live event in Manchester, with the ‘hard’ launch planned for some time in June.

With the very short time frame for the work, the opportunities for consultation with the industry have been limited and what will be delivered will largely represent the views of NBS and the other project partners.  There has been some dialogue with a group representing a number of the institutions and institutes, but it is not clear at this point how much influence they have had.  Also, there have been a number of presentations and webinars over the last few months showing progress to date.

As you would expect, there has been a significant amount of feedback from the institutions’ body, including a CIBSE team from its BIM Group.  The CIBSE team has tried to look at how these new tools will work throughout the life of the asset, and has looked wider than just the 3D modelling aspects of the output.

Three key issues have come to light with the classification structure being prepared.  Firstly, it must be capable of classifying multi-services systems or elements.  A good example would be a multi-services co-ordination drawing.  Historically, classification systems such as Uniclass have only classified up to ‘types of systems’ – ventilation and air conditioning services and electrical power and lighting services are two such examples.  Combining services in an application is common and the new classification system needs to be able to accommodate this.

Secondly, it is important to be able to classify things other than those associated with a 3D modelling environment.  A wide variety of documents will be generated throughout the life of an asset and these all need to be classified in order to be stored and subsequently made available for reuse.   Obvious examples are reports, correspondence, drawings and specifications but could equally include EIRs.

The third aspect is the continuity of classification.  It is suggested that the Elements table would be used at the early stages of a project to describe needs – Heating would be an example.  As the project progresses and more detail develops, this might become Low Temperature Hot Water Heating Systems from the Systems table.  Although this looks sensible in theory, there must be a connection between these two tables as a cornerstone of BIM is to build on information and not throw it away and start again.  Therefore, the first part of the Elements table should match the corresponding Systems table entries to achieve this.  The alternative is that the Systems table is used throughout with subsequent pairs of characters being added to reflect the increasing level of information as the project progresses.

We have discussed these issues with NBS recently and it will be interesting to see how the new classification structure accommodates them.  Realistically, it is probably too late to see them reflected in the April or June releases, but more are planned for later in the year.  If these issues are addressed I believe that it will be a significant step towards providing a classification system that works for all those involved.

A key factor in the success of the Innovate UK project will be the way in which the outputs are disseminated.  They could be the best dPoW and classification system in the world but unless they are adequately explained they might not be adopted into common use.  The phrase ‘winning hearts and minds’ seems appropriate in this case and its importance should not be underestimated.

Using Robotic Total Stations to drive down the cost of construction

Since the days of the Latham report in 1994 there has been a desire to cut the cost of construction, mainly by finding more efficient ways of doing things. Of course, there will always be people who stick rigidly to the principle that ‘the old ways are the best’, but there are many more who are more open-minded – not least in terms of making use of new technologies.

Having said that, there is one particular technology that has not yet been embraced in the UK, despite the significant financial and time benefits that have been shown time and again in the USA and other countries.

I am referring to the use of Robotic Total Stations (RTSs) for laying out building services – as an alternative to the traditional ‘tape measure, spirit level and theodolite’ approach.

This blog considers the limitations of traditional methods and explains how RTS technology can help to overcome them. It also explores some of the reasons that this technology has not yet been widely adopted in the UK.

Are the old ways the best?

Traditionally, the layout of building services on site has involved a team working from the building drawings, using a tape measure, spirit level and theodolite to identify attachment points for pipework, cable trays etc.

Unfortunately, this system doesn’t work particularly well with complex buildings, buildings with curved walls, buildings with prefabricated materials, BIM or non-orthogonal spaces. In fact there is a huge margin for error, resulting from the following challenges:

  • Ensuring the reference point is right
  • Making sure the tape measure doesn’t move
  • Making sure the string doesn’t move on arcs
  • Ensuring the theodolite is level
  • Making sure the degree in which you are measuring is exact

Every small mistake can lead to potentially serious consequences. For example, being a few degrees out on an angle can mean that pre-fabricated systems don’t fit when the time comes to install them.

Similarly, incorrect layout can result in clashes with other building elements or services, thereby disrupting the construction schedule, generating remedial works and wasting materials, time and money.

Even when everything goes smoothly, the traditional approach is laborious and time-consuming and any delays can affect the work of other teams.

Plus, when changes need to be made, methods of recording reasons (obstruction etc.) and evidence (photographs etc.) are recorded additionally to any drawings they are working from.

These reasons are sometimes reported to the design team (if there is one) to amend the drawings or model; at other times, these records are filed separately for the purposes of finger-pointing at a later date.

Either way, it takes a long time for this information to be reflected in the designs, if at all, which means other contractors or labour forces won’t see the changes until they’re updated.  Working from paper also has the potential for loss or damage.

Furthermore, these issues are going to become more serious with the wider use of Building Information Modelling.

An alternative approach

Robotic Total Stations (RTS) allow layout to be completed by only one person, rather than the classic layout team.

To begin construction layout, a tablet with software controls the RTS and is loaded with a 2D drawing or 3D building model. Site survey points from the job site are identified in the model and are used to locate the RTS on the project site and in the model.

Once the RTS is located, the person operating the RTS can view the model on the tablet computer and select the points to be marked.  Once selected, the RTS will tell the operator their precise distance from the point (if using a stake) and then guide the user to the point with directions indicating forward/backward or left/right movement.  The operator then stakes the mark and moves to the next one.

A more advanced RTS feature is Visual Layout  which marks the layout point with a laser (removing the need for the stake); the operator then only has to follow the laser to each point and mark the location.

Basically, the RTS does all the work while the operator follows its laser, marking each point to within a distance of millimetres from the 2D/3D model point.

This can be used for the accurate positioning of multiple trades at the same time, ensuring no delays on site.

So what are the benefits?

Improved efficiency.

RTSs use the same 2D drawings or 3D building models as other trades involved in the project, so collaboration is simpler and quicker.

Enhanced accuracy.

Layout coordinates can be accessed directly from the building model and changes to layout positions can be recorded at the time of layout and documented with reasons and photographs.

Fewer mistakes.

The RTS works directly from the building model. There are no manual measuring processes involved. Points to be marked are extremely accurate and their purpose is referenced to the operator via their tablet device.

Reduced paperwork.

Using the RTS on a job is a paperless process, meaning there is no risk of losing documents or spilling coffee on them.

Reduced labour costs.

The RTS only needs one person to operate it and that one person is also capable of increasing layout productivity by up to five times.

Improved quality control.

RTSs can be used as a sophisticated tool in a QA/QC process, both pre- and post-installation.

BIM-to-Field

As we move to more sophisticated BIM processes – such as 4D & 5D BIM that includes building production models and which consider the constraints of a construction site (equipment capacity, working methods etc.), model based estimating and more – a live link to the field is needed.

This link, in part, can be provided with the use of an RTS, allowing responsible parties to track works as they are completed and referenced against the original model, applying changes where necessary and allowing the tracking of works ready for access by the next stage in the construction process.

So why aren’t we using them?

Companies across the US have used RTSs on construction sites for many years now. They’ve been highly popular with MEP contractors and revolutionised layout processes and BIM progression; so why don’t we use them?

A lot of it simply comes down to misconceptions about the technology and its uses.

Return on investment.

Implementing RTS technology requires capital investment and many companies feel that because they don’t have dedicated layout teams they won’t see a good return on their investment.

However, the relative simplicity of RTS technology means that any member of the MEP team can carry out accurate layouts, so the contractor can make better use of the workforce.

Also, RTS eliminates manual errors so that the most highly skilled and best trained individuals can be allocated to the more complex tasks, while lower skilled operatives do the laying out.

In addition there are considerable time savings that could ultimately reduce the number of operatives required on the project, thus reducing labour costs.

You can calculate your own ROI here

The savings cited for RTS do not have any real impact on the bottom line.

This is simply not true. Savings from the use of an RTS can be seen in:

  • Reduced remedial works due to increase in QC/QA documentation and recording – an immediate reduction in cost.
  • Improved efficiency whilst on site – reduction in labour cost.
  • Fewer errors in MEP element locations (another remedial work saving) – an immediate reduction in cost.
  • Reduced resource required to complete works – an immediate reduction in cost.

MEP designs evolve during installation so that the drawings do not represent the actual situation.

Perhaps this is true today, but if you are working this way now, you won’t be for long. For medium and large projects MEP data and detailed design will be as essential as structural design as the industry assimilates the BIM process.

UK BIM deadlines are looming now and businesses looking to grow, or large businesses looking to remain profitable, will need to ensure they can work in these parameters – and soon.

Clashes between services do not occur when the same contractor is doing all of the MEP work.

On small projects it is often possible to ‘work around’ any clashes between services. However, on larger projects it is not enough to ask for one element to be placed over/below/around another, as this may then run into a second clash with a third element.

This second work around would involve a wider rectification, which may infringe on another element, and so on until a solution cannot be made.  Eventually, it may occur that an MEP element then interferes with the installation of another contractor’s or team’s work.

Also, when ‘working around’ an issue, we create problems when considering building maintenance post-construction, as MEP elements will deviate from their logical course.

UK construction techniques do not lend themselves to using an RTS.

While it’s true there are some differences between UK and US construction methods, there are many more areas where RTS can deliver the same benefits to UK contractors as it is already doing for US contractors.

Conclusion

While any investment in new technology clearly requires careful consideration, I hope it is now clear for the reasons stated above that RTS is certainly worthy of that consideration. The potential benefits to MEP contractors are enormous, so surely it’s worth taking the time to keep an open mind and take a closer look.

Follow this link to see a demonstration video or, if you’d like to see this technology in action, book onto a Trimble road show event to compare this with a traditional approach.

Author Profile
This blog was written by Chris Slinn, MEP Business Development at  Amtech, a Trimble company, a manufacturer of specialist software for the building services industry.

%d