Review of the BSRIA Briefing 2013 – Changing Markets, New Opportunities

“Construction is the last of the big industries to go digital”, John Tebbit, Construction Products Association

November 2013 saw another brilliant BSRIA Briefing held as always at the fantastic Brewery in London. The event was chaired by John Tebbit, Industry Affairs Director at the Construction Products Association with c400 industry professionals in attendance. The speakers this year were focusing on customer satisfaction, data centre trends, changes in building practice and design decisions, smart technology leading the industry forward and the internet of things.

Chairman John highlighted two key issues facing the industry, the Construction 2025 strategy and the move towards Low Carbon as well as the construction industry being the last industry to go digital despite a demand to do so.

Bukky Bird talked about Tesco as a continuously changing organisation by highlighting some of the company’s historical milestones. From Tesco’s founder Jack Cohen opening a market stall in 1919 to becoming a global company with just over half a million colleagues today.

Bukky also highlighted some current customer expectations and key drivers for this such as the current economic context. She emphasised the need for organisations to understand and respond to changing needs and environments.

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, Tesco

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, TescoToday’s customer is under pressure, struggling with rising costs and dealing with lifestyle changes. The focus is therefore on family and the home, with a real expectation that brands should reduce waste and save money. Responding quickly to these needs is critical for retailers like Tesco and this should therefore drive the focus through the industry supply chain.

A challenge facing our industry is how to develop true partnerships to tackle these problems. Bukky highlighted the need for flexibility, agility and the need for the industry to be willing to change. The customer is changing radically and the building industry needs to be ahead of this curve.

Historically we have been very slow to adapt, and this is an opportunity to buck that trend. Her final point was that the industry are not supplying Tesco, but Tesco’s customers – understanding the customer’s needs and developing innovative solutions to meet these is key to successful partnerships.

“Nobody ever did anything to be green, they did it to save money”, Nicola Hayes, DatacenterDynamics

 Nicola Hayes looked at a rather different sector focusing on data centre trends and energy. Datacentres Nicola argued are the buildings you do not see, the hidden side of the industry and yet becoming a central part of several industries as people relocate their data to the Cloud. Nicola discussed the fact that Datacentres may be hidden but they do suffer negative publicity mostly due to the energy usage of such buildings and the accusation from the Press that they are singlehandedly destroying the planet. When viewing the industry as a country, the industry uses a little less energy than the UK as a whole, marked at 332.9TWh which is an exceptional amount and understandably a worry for the industry and a target from the Press.

But it was the trends that Nicola was concentrating on, where the Datacentre industry has come from and the expectations of it for the future. In three years the industry has grown from $86bn to a staggering $120bn as well a doubling in space used for the buildings, growing from 15million sqm to 31million sqm. The growth of Datacentres is down to several other key industries, the rate of increase has risen for Professional Services, Energy & Utilities, Industrial & Process and Media & Telecoms. With this growth there has been a change in how Datacentres are being built and their operations. There has been a 15% increase in outsourcing for the industry since 2007 rising to nearly a quarter of the industry but IT Optimisation still remains a major investment.

For the built environment the biggest change Datacentres has had for them is the increase in energy monitoring and the storage of millions of data bits. People in the world, particularly the US, UK and Germany are starting to become more conscious of energy efficiency therefore more business is generated for the Datacentre industry through big data from energy monitoring. Nicola pointed out that this is not done for a purely ‘green’ reason but primarily to monitor costs which are why most universities do not monitoring as they are not responsible for the financial side of their energy use.

With there being such a focus on energy efficiency, the way Datacentres are being built has also been a changing trend with there being 25% increase in the number of retrofits of Datacentres while there was only a 2.1% increase in the number of new builds. Efficiency measures (to answer to the Press criticism) are also now determined from the outset. However despite Datacentre industry growing at a fast rate there are risks involved for the industry from the small scale of compliance to the large scale of terrorist attacks. With these risks comes an important debate that is happening within the industry, cost vs. risk.

“There is a market for MVHR but we need to get better at delivering it”, Nigel Ingram, Jospeh Rowntree Housing Trust

 Nigel Ingram continued with a discussion about social housing and the consideration of end users when designing buildings. The Joseph Rowntree Housing Trust currently looks after 2,500 homes in Yorkshire and Hartlepool. Nigel discussed one particular project the Housing Trust are involved in, the Derwenthorpe village which looks at the lessons learnt from past projects and how they can improve their buildings. The way the Joseph Rowntree Housing Trust decided on best building practices was through experimentation over four years, they built two prototypes and used 17 different methods and as many M&E components as possible including grey water harvesting and block work systems. The aim of this experimentation was to see what worked to create the best possible building.

As well as all these design considerations Nigel also enforced the importance of the end user and their lifestyles with the Joseph Rowntree Housing Trust looking at how people live in buildings and what changes in lifestyles are expected in the future and how best can the prepare buildings for that. There were three main points that made up the JRH’s strategic servicing infrastructure, the first being fibre optics. The Trust believes that with the use of technology ever increasing including internet, television packages etc. they needed to invest in a viable cabling network. However none of the big companies were prepared to discuss such a project therefore the Trust developed a joint venture with an investor to set up their own fibre optics for the estate, by doing so they satisfied the customers and set them up for any increase in connectivity in the future.

The second point the Trust considered was Communal Heating, they looked at a variety of different heating techniques for the estate such as low ground source heat pumps.  Communal Heating was decided on in 2007 from a carbon footprint point of view as at the time the Code of Sustainable Homes was announced with zero carbon targets by 2016. Communal Heating is notoriously difficult to get working efficiently, just like any heating system however after it was distilled down into the six components that worked for the Trust it was able to provide fuel security and prince control for the future residents which is what users wanted from their buildings. The system now works and is one of the only systems in the country that is successful and has been contracted for 25 yrs to a European Communal Heating group.

However Nigel wanted to point out that the Derwenthorpe village has not been completely successful, the final point in their strategic servicing infrastructure was MVHR Systems. The project has not seen any success with these systems, it has been installed in 64 houses but customer feedback has been negative and there are many issues with it. As an alternative MEV is now being used. Nigel stresses that there is a market for MVHR systems but for it to work there needs to be massive improvements in the industry in terms of commissioning, installation and maintenance. There seems to be a technology focus rather than process and this needs to change if the industry is to satisfy clients and users of buildings.

Nigel’s main focus for the Derwenthorpe project was customer satisfaction, the importance of the end user. Fibre Optics and Communal Heating was installed for the benefit of the residents of that estate as they have certain expectations of the way they live including operational and financial. The Joseph Rowntree Housing Trust has focused on the end user for their design plans rather than what should work from the industry perspective. Rigorous testing and accepting systems aren’t right has gone into making sure buildings are built as best as they can be which is important for our industry, it’s taking into consideration the mistakes made on previous building stock and learning from them and also considering the occupants and their needs.

“The Cloud is as suited to small buildings as it is to big buildings or building portfolios”, Jeremy Towler, BSRIA

 Jeremy Towler reflected on the “smart” built environment and how we get there. Jeremy highlighted that there is a lot happening and changing in our industry emphasising that we are the last industry to go digital despite there being several opportunities for digital work particularly wirelessly. BEMS will become an increasing component of buildings, modules will be built off site and therefore digital technology needs to be an important investment. Mobility will also become a more important part of the built environment, currently everyone uses a mobile but with geo-location buildings will be able to recognise everyone in buildings and respond dynamically. With this the collective voice of the occupants starts to influence the building which could be quite revolutionary.

Building Analytics are also an important step towards a “smart” built environment, increasingly buildings have sophisticated software that permits building operation and how best to optimise them. With Building Analytics becoming a more common part of our industry there has been a move towards the Cloud which has allowed data mining to reveal relationships and trends we never could have imagined. With these advances also comes the development of Smart Cities, particularly in China where there is a commitment to build at least 30. Jeremy defines smart cities as an incorporation of intelligent buildings, broadband connectivity, innovation, digital inclusion and a knowledge workforce.

But Jeremy states it’s not just smart cities we have to consider, its smart grids and smart buildings. Smart grids is an advanced power grid for the 21st century, essentially it is a decentralised multi directional model where energy and information can flow from supplier to consumer and vice versa which enables a variety of new applications for homes and businesses. Smart homes on the other hand have reached a critical mass and are due to break into the standard housing market but with this there has been an opportunity seized by the utilities who are now offering connectivity.

With smart homes becomes the internet of things and the ‘ubiquitous homes’ where sophisticated systems learn behaviour and respond accordingly, like our mobile phones that can tell us where we want to go and how we need to get there, such software will be used in our own buildings to provide our homes with the settings that we need. However the current built environment is a long way from becoming a smart industry, currently more than 75% of the building stock has no intelligent controls which is primarily to do with the age of the buildings with over 40% of total stock being built before 1960. With this in mind there is an opportunity for the industry to consider a great deal of retrofit projects but for smart technology to work to its best potential for the built environment the industry needs new skills developed through training in software and hardware analysis.

“We are now accountable for how our buildings perform “, Michael Beaven, Arup Associates

 Michael Beaven continued on this theme of the industry needing to change but instead focused on workflows. Arup has learnt that change is beneficial to the industry, adaption is necessary to meet the needs of the client. Arup have changed what they do and how they do it, learning that doing things the same way over and over again is to no benefit. However despite the need to adapt there are constants within the industry, carbon being the main issue for energy costs and emissions for companies in reputational aspects as well as the bottom line an example being Sky who are very forward looking including reducing the carbon of their set top boxes from 10 to 4 watts saving 20megawatts to the grid.

Importance of energy and efficiency is paramount but so is what we build it with. Embodied carbon is a key player in how we build our buildings now; decisions are being made on where products come from and their whole life cycle rather than primarily cost efficiency. Buildings are also being tested now, everything is monitored in our buildings so we can learn how to improve them, we are accountable for how buildings perform. From this we can learn how to design buildings that are successful for end users.

Michael also emphasised Jeremy’s point of the internet of things, how the integration of IP controls are making building betters and even the advancement of BMW considering smart transport for smart cities. Building on the interaction between traffic signals and mobile data to develop relationships between them to better control traffic, even where you park will be managed in a smart way. Another important development in terms of smart technology is that people are now connecting and sharing information on what works for a building and how best practices can be established.

One of Michael’s most important arguments was the importance of BIM and the matter that we as an industry really need to get up to speed with it. It’s client driven so we need to be on board as it is not only changing our workflows but also our business, without a grasp we lose projects. There also needs to be an acceptance that BIM is not just about 3D drawings and design but rather it should be a changing of our work streams to digital.

BSRIA Briefing panel answers questions from the audience

Michael’s final point tied in one of the key themes of the morning, customer satisfaction or rather the importance of the end user. Arup are moving towards an end user focus, designing buildings for people rather than the client or the architect. He used Sky as an example of a company championing a place for people, designing a building that understands what the user wants rather than what is considered the best design. Michael emphasised the feedback loop, empowering people to vocalise what they want in a building, what controls work for them, with that Soft Landings is critical for discovering what works and what doesn’t and resolving these issues before a project is completed.

There were a variety of thoughtful questions throughout the morning ranging from what the industry is doing to combat the UK’s power supply reducing to 2% by 2016, John Tebbit argued that the UK needs to stop investing in the UK and instead build industry abroad and import into the UK. There was also discussion on why there are so many installations problems within the industry, Nigel Ingram suggested there was too much blame placed on the end user, that there needs to be more ownership of mistakes and to learn from them if the industry is to move forward. This was the key theme throughout the morning, for the industry to move forward in any pursuit especially digitally we need to focus on trends and accept change as a good thing. But when accepting change we also need to learn from our past mistakes rather than continue to avoid them.

“Change comes from doing 100 things 1% better”, Sir Clive Woodward

Following lunch guests were treated to an afternoon speech from Sir Clive Woodward who continued the theme of change being necessary to move forward and how that worked for the England rugby team and the British Olympic team. Sir Clive’s talk looked at the 3F’s or 6F’s argument and interestingly the importance of an Australian dentist and his impact on working habits. He emphasised the effort of a whole team being behind any win and argued that talent is not enough but learning, calmness and hard work are needed to leverage it.

A special mention also goes to Chris Monson, of main sponsor Trend, who was awarded an Honorary Membership of BSRIA, becoming only the 8th person honoured. Chris accepted the award from BSRIA Chairman Leslie Smith and thanked the company as well as the industry.

A big thank you to all delegates that attended and the speakers who gave their time to the event. Also thanks to Sir Clive Woodward for being our afternoon speaker and rounding up a fantastic Briefing.

To download the presentations from the event go to BSRIA’s website.

Testing of Solid Fuel Stoves

Dr Arnold Teekarem, Head of Combustion at BSRIA

Dr Arnold Teekaram, Head of Combustion at BSRIA

Stoves manufacturers are now CE marking their appliances under The Construction Products Regulation (EU) No 305/2011 (CPR) having successfully completed the CE marking tests at BSRIA on a purpose built facility.  The facility was UKAS assessed this year in accordance with BS EN ISO/IEC 17025 “General requirements for the competence of testing and calibration laboratories”  to become an Accredited and Notified Test laboratory for testing Solid Fuel Stoves  The automated test facility which has a unique data acquisition system for recording real time data such as flue gas emissions, 300 trihedron wall and floor temperatures, flue draught and the fuel load enables both the thermal performance and smoke emissions tests to be carried out on free standing stoves designed to burn wood and mineral fuels.

Thermal Performance and Safety tests

In accordance with BS EN 13240: 2001 +A2:2004 “Room heaters fired by solid fuel-requirements and test methods” BSRIA is able to offer clients the following tests on residentially non mechanical stoves (intermittent and continuous burning) for various types of solid fuels

  •  Thermal performance tests including thermal heat output and efficiency
  • Safety tests- These include operation of appliance to determine the safe combustible distance from the stove to any combustible material
  • Emissions of combustion products
  • Checks to determine whether the materials, design and construction requirements of the appliance comply with the requirements of the standard
  • Checks to determine whether the installation and operating instructions of the appliance comply with the requirements of the standard
  • Checks to determine whether the marking information given on the appliance comply with the requirements of the standard
Thermal performance test facility

Thermal performance test facility

Fundamental to achieving optimum thermal performance of the stove under test are a number of variables.  These include achieving the correct combustion air settings – the appliance air controls must be adjusted accordingly to optimize the flue gas temperature, CO2 and CO levels within the flue gases whist at the same time achieving the optimum burning rate.  Unnecessary variations in the test conditions such as the flue draught can significantly affect the burning rate and thermal performance of the appliance. The test standards require a flue draught of 12 ± 2 Pa for thermal performance test at nominal heat output for appliances up to 25 kW.  For temperature safety tests, the flue draught must be maintained at 15 +2/0 Pa for appliances with a nominal heat output of up to 25 kW.  The test rig is automated to give good controllability of the test conditions within the limits imposed by the test standard.   Minimizing variations in the moisture content of the test fuel is an important parameter that is important both for repeatability of the test results and achieving optimum combustion performance. This variable is also controlled using internal quality control procedures, careful selection of the test fuel and measurement of the moisture content before the tests.

CE marking of stoves became mandatory from the 01 July 2013 and under the CPR, manufacturers products are now required to demonstrate compliance with the above tests by having the appliance tested by a Notified Test Laboratory.  These tests are summarized within annex ZA.1 of the standard.  Manufacturers are also required to implement their own factory production control (FPC) procedures under the current attestation level 3 for room heaters fired by solid fuels.

Smoke Emissions Tests

In addition to the above, BSRIA is also now able to offer DEFRA smoke emissions tests on appliances seeking exemption for

Smoke emission measurement

Smoke emission measurement

burning unauthorized fuel in smoke control areas within the UK (section 21 of the Clean Air Act 1993).  The state of the art test facility uses the dilution tunnel approach with isokinetic sampling of the flue gases, an approach which is also used by some European test houses.  Tests are conducted in accordance with PD 6434, BS 3841 Parts 1 & 2 and the Richardo -AEA Test Protocol issue 3.0.  Because of the variation in the smoke emission between tests, multiple tests are conducted at high heat output as well as reduced heat output.  As the smoke emission rate is dependent on the size of the stove (volume of its firebox), its air controls which affects its combustion performance and the fuel used, the measured heat output at each load must also be reported.  If appliances are fundamentally different in their designs, then individual smoke tests are also required. The exception to this are appliances with cosmetic changes to the exterior.

The smoke emission rate can also be affected by the manner in which the appliance is refuelled.  If the firebed is not established i.e. if there is insufficient burning material to cause the new fuel charge to ignite within a reasonable period or if the appliance is overloaded with a new fuel charge, excessive smoke can occur.  Care has to be therefore taken during the tests to avoid such adverse operating conditions that can cause the stove to unnecessary fail the smoke emission tests.

The iso-kinetic method of sampling the smoke emission within the dilution tunnel used by BSRIA is an accurate and representative method of determining the smoke emission rate from appliances burning wood and mineral fuels. In this technique, the velocity of

Data Acquisition System

Data Acquisition System

the sampled gases within the sampling nozzle is maintained the same as that of the mainstream flue gases within the dilution tunnel.  The specialist instrumentation used for sampling is an automatic gravimetric sampler which continually adjusts the sample volume flow rate and hence the flue gas velocity in the smoke sampling nozzle.

In tests conducted at BSRIA, iso-kinetic sampling has been consistently maintained during the tests.  The maximum isokinetic deviation on the velocity is around 0.8% compared to 2.5% which is required in the test standard.

BSRIA’s smoke emission test results are expressed in grams/hour to enable comparison with the permitted smoke emission rate given in BS PD 6463 and represent the average smoke emission rate taken over the test cycle which is typically 45 minutes to an hour. Alternatively the smoke emission rate can be expressed in mg/m3 at a reference oxygen content of 13% in the undiluted flue.

Opacity measurements are also taken during the tests to detect the peaks in the smoke emissions during refuelling and de-ashing.

Further information on testing of stoves and other types of solid fuel appliances can be obtained by contacting Dr Arnold Teekaram, Head of Combustion BSRIA Tel 01344-465538 or by e-mail at arnold.teekaram@bsria.co.uk or by visiting BSRIA web site http://www.bsria.co.uk/services/testing/standard-testing/solid-fuel-stoves/

Smart metering makes BPE easy…or does it?

BSRIA's Alan Gilbert

Head of BSRIA Instrument Solutions Alan Gilbert

Building Performance Evaluation (BPE) is here to stay. With government driving towards 20% reduction in costs for its built estate and increasing unwillingness to accept design predictions as sufficient to prove outcomes, objective measurement will be key. Government Soft Landings (GSL) and the implied BPE activities attest to this. In the housing sector regulation is increasingly looking to proof of performance (airtightness for example) with a growing European focus on providing owners with objective labeling of homes. The recent announcements of the 2013 revisions of Part L have largely focused on fabric issues but it seems likely that attention will now turn to the performance of installed HVAC plant and associated controls which themselves will present a challenge in proving that combinations of low carbon technologies are indeed working properly.

All this is happening at the same time as measures to introduce smart metering are coming on-stream. With a commitment to have full implementation by 2020, smart meters should provide a powerful means to assist with BPE of both commercial and non-commercial buildings but will they really realise this objective?

Just how “smart” is smart in the context of metering? At its lowest level the smart meter simply offers a remote display of energy use (often expressed in £) so that users are sensitised to consumption. Rarely are both gas and electricity monitored and I know of no instance where water is included as well. This is a shame: water (especially hot water) is an increasing proportion of dwelling energy use and is largely ignored by householders. There is increasing evidence that this kind of visible display can have good initial impact but that users rapidly de-sensitise. Really, these meters are not smart but simply remote display devices.

More commonly “smart” means that meter readings can be transmitted to the supply company on a scheduled basis. This is the type currently planned to be used in the present roll-out. Again it is unlikely that all three services are monitored and the data is often collected at no more than half hour intervals. As an alternative to self-read or estimated billing they are undoubtedly an improvement and will help electricity companies come to terms with balancing home generation and network loading but the thorny problem of access to data remains to be overcome.

Finally there is the possibility of the “really smart” meter which will permit full two way communication between utility and user thus bringing into reality the possibility of sophisticated demand management options for the power companies. Potentially this could be a rich source of data for BPE but ownership of the protocols and access rights are likely to be a serious hurdle to potential third party users of this resource.

Even if full access to a multi-service, duplex remote metering scheme is possible it cannot provide the additional data that a proper BPE service demands. In order to interpret energy use data additional sensors are needed to enable forensic analysis. Internal temperatures, occupancy rates, casual gains from white goods and local weather, all are needed to understand and normalise energy use back to some design criteria. Even when all this is achieved there is often no substitute for “feet on the ground” to interview occupants or spot unusual behaviours.

Access to large volumes of user data is one key requirement to understanding just how the various interventions in existing dwellings or

British Gas Smart Meter

British Gas Smart Meter

the application of new regulations in the built environment sector are working. The Department of Energy & Climate Change (DECC) has developed a restricted access National Energy Efficiency Data-Framework (NEED) and this has proven invaluable in understanding the real impact of certain measures such as cavity fill retrofits. Unfortunately this kind of data is not readily available to the wider research community at present nor is it fed from real-time or near real-time sources. This makes it unsuitable for analysis of individual properties.

We want to really deliver truly low energy (an carbon) buildings that are also healthy, productive and comfortable to use but,until the tangle of issues associated with privacy and smart metering are resolved then there is little alternative or more of this kind of work that will not only resolve issues in individual dwellings but also create a new generation of people able to interpret complex building physics and behavioural data. Surely a good thing in itself. If however we really want to look at effects in the wider population of buildings then DECC should be encouraged to invest in NEED and roll it out to wider research community so that academics, business and industry can better identify opportunity for action in bringing UK nearer to its legal carbon commitments.

For more information about BSRIA’s involvement in BPE including a presentation defining BPE as well as information on how Soft Landings fits in click here.

%d