Indoor air quality: 7 contaminants to be aware of

In the UK, on average people spend more than 90% of their time indoors.

Indoor air quality is affected by outdoor pollution, but also by indoor sources and inadequate ventilation. Air pollution can have a negative impact on our health; from short term effects such as eye irritation and coughs to long term effects such as respiratory infections and cancer.

Here, we take a look at contaminants commonly found in buildings. For more information on how to manage indoor air quality, please visit the BSRIA Air Quality Hub.

Carbon Dioxide

A colourless and odourless gas resulting from combustion and breathing. At higher concentrations carbon dioxide can cause drowsiness, fatigue, and dizziness as the amount of oxygen per breath is decreased. In an enclosed environment, ventilation is key to reduce carbon dioxide build-up.

Carbon Monoxide

An odourless and colourless gas produced by incomplete combustion of fuels such as oil, wood, and gas. Carbon monoxide binds with haemoglobin in blood cells instead of oxygen, rendering a person gradually unconsciousness even at low concentrations.

Ozone

Whilst beneficial in the stratosphere, when found at ground level, ozone causes the muscles found in the respiratory system to constrict, trapping air in the air pockets, or alveoli. Ozone can be produced by certain air purifiers, laundry water treatment appliances and facial steamers.

Particulate Matter 2.5

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles are 2.5 microns or smaller. PM2.5 sources include transportation, power plants, wood and burning and can cause airway irritability, respiratory infections, and damage to lung tissue. 

Particulate Matter 10

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles is 10 microns or smaller. PM10 sources include construction sites, industrial sources, and wildfires. These inhalable particulates can obscure visibility, cause nasal congestion, and irritate the throat. 

Formaldehyde

A colourless gas that is flammable and highly reactive at room temperature. Formaldehyde is a carcinogen and a strong irritant. Formaldehyde can be found in building materials, resins, paints, and varnishes and can last several months particularly in high relative humidity and indoor temperatures.

Total Volatile Organic Compounds

Carbon-based chemicals that easily evaporate at room temperature, most commonly found in building materials, cleaning products, perfumes, carpets and furnishings. Long term exposure can cause, cancer, liver, and kidney damage whilst short term exposure can cause headaches, nausea, and dizziness.

Find out more about air quality at the BSRIA Air Quality Hub.

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

Acoustics in the workplace – What’s the “new normal”?

Rebecca Hogg
Acoustic Consultant, BSRIA

Wooden blocks spelling 'new normal'

There is no denying global events this year have turned every aspect of our lives upside down, and as we all start to try and get back to normal while lockdown restrictions ease, we realise it is a “new normal”.

Workplaces have changed, some almost unrecognisable from before, and there is a myriad of requirements to consider beyond the essential health and safety measures. Occupant wellbeing was a prominent consideration prior to lockdown, and this included provision of a good acoustic environment, but how are new COVID-secure workplaces affecting the acoustic environment?

For many years there have been acoustic standards and guidelines on internal noise levels in offices, determining sound power levels of building plant, and predicting the sound absorption of materials. Well designed open-plan offices have allowed large groups of people to collaborate and communicate effectively, and noise regulations have ensured factories and construction sites operate without disturbing neighbours.

In recent months, the workplace has been turned on its head. Following government guidelines many people began working from home. Suddenly the familiar hum of the workplace was replaced in some instances with squabbling children or impatient pets, and if you live alone maybe unwelcome silence replaced your usual face-to-face conversations.

As people are gradually allowed to return to a place of work, new COVID-secure offices have changed the acoustic environment. The installation of screens, the partitioning of open plan spaces, wearing of face coverings, and a lower level of occupancy have created acoustic challenges. For example, speech intelligibility is affected by the reverberation time of a space. Fewer people and more reflective materials, such as plastic screens, will decrease the sound absorption and increase the reverberation time, resulting in poorer speech intelligibility.

Building services have been specified, installed, and commissioned for a particular set up of a workplace layout and building occupancy. If a space is divided into individual offices to allow for social distancing, then the building services provision also needs to be reconsidered. Changing the control settings of a system will have an impact on the internal noise levels and subsequently on levels of occupant annoyance.

Not everyone works in an office, so, what about situation in different workplaces? Factories, shops, and construction sites have been redesigned to allow for social distancing, and often operating hours have been extended to allow for shift patterns, potentially increasing noise nuisance for neighbours.

In these environments the noise levels are also often higher and communication between people can therefore be harder. People working further away from each other and wearing face coverings will inhibit successful communication and influence performance, and if someone must shout to be heard does this have the potential to spread virus droplets further? There should also be consideration of the highly overlooked 12 million people in the UK who suffer from some level of hearing loss. Being unable to lip read because someone is wearing a face covering, or unable to hear the conversation over a bad video conferencing link is incredibly frustrating and isolating.

The acoustic challenges within a COVID-secure workplace may seem overwhelming but there are several simple solutions. Firstly, identify noise sources in the workplace and maintain them appropriately to minimise background noise.

Something as simple as cleaning filters inside a fan coil unit can increase airflow and capacity, meaning the fan speed can be reduced and subsequently the noise level.

Secondly, examine acoustic specifications of any new products being installed – ask to see test reports and consider how a new product could influence the acoustic environment.

Finally, consider the occupants of your workplace and how they use the space. Tailoring the acoustic environment to the needs of the occupants can increase productivity, decrease annoyance and overall improve the wellbeing of all. The focus on workplace safety is paramount, but long-term considering other design parameters, such as the acoustic environment, will ensure workplaces not only survive but thrive.

BSRIA acoustic experts publish guidance, and support our members and clients with a range of acoustic testing solutions. Read more about our UKAS-accredited laboratory for acoustic testing to BS EN ISO 3741, BS EN 12102 and BS EN ISO 354 here.

University of Reading Research Study: Indoor Environmental Quality and occupant well-being

Gary Middlehurst is a post-graduate student at the University of Reading's School of Construction Management and the Technologies for Sustainable Built Environments

Gary Middlehurst is an Engineering Doctorate (EngD) student at the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE)

Looking at a new approach for determining indoor environmental quality (IEQ) factors and their effects upon building occupants, BSRIA has provided the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE) Centre access to their Bracknell office building known as the “blue building”.

 IEQ factors are proven to affect occupant well-being and business performance, however, for the first time, actual environmental and physiological field measurements will be compared. New research therefore has been developed by the University of Reading, which will seek to understand these relationships and the potential impacts of known IEQ factors on perceived levels of occupant satisfaction and well-being.

Understanding fundamentally how IEQ factors can affect building users, will allow system designers to finally visualise occupant well-being, personal satisfaction and productivity as part of a holistic business performance model. Based upon empirical measured IEQ factors and surveyed occupant data, the research hypothesis proposes that high-density occupation can reduce office workplace environmental footprints significantly when physiological impacts are understood.

The research methodology brings together measured environmental characteristics, physiological performance measurements, POE survey responses, and then uses an Analytic Hierarchy Process (AHP) to assess existing workplace designs.

Gary Middlehurst blogReducing operational costs and increasing occupant satisfaction and well-being is seen as a distinct competitive advantage, however, businesses remain focused towards meeting the challenges of energy security, demand side management and carbon commitments. The research, therefore, will provide empirical data to create informed business decisions focused upon these challenges. This is done by increasing the importance of well-being and by defining performance as a key metric.

Field research is currently underway on the top floor within the “blue building”, where 4 willing volunteers are participating in physiological sensory measurements and POE response surveys. The project will be running for 12-months, with the initial current 2-week data acquisition period being repeated a further 3 times during winter, spring and summer of 2015/16.

The research is also being conducted at two other similar office environments in Manchester and London, and seeks to support the hypothesis that hi-density workplaces are a further sustainable step in designing and operating more efficient and effective intelligent buildings.

%d bloggers like this: