Indoor air quality: 7 contaminants to be aware of

In the UK, on average people spend more than 90% of their time indoors.

Indoor air quality is affected by outdoor pollution, but also by indoor sources and inadequate ventilation. Air pollution can have a negative impact on our health; from short term effects such as eye irritation and coughs to long term effects such as respiratory infections and cancer.

Here, we take a look at contaminants commonly found in buildings. For more information on how to manage indoor air quality, please visit the BSRIA Air Quality Hub.

Carbon Dioxide

A colourless and odourless gas resulting from combustion and breathing. At higher concentrations carbon dioxide can cause drowsiness, fatigue, and dizziness as the amount of oxygen per breath is decreased. In an enclosed environment, ventilation is key to reduce carbon dioxide build-up.

Carbon Monoxide

An odourless and colourless gas produced by incomplete combustion of fuels such as oil, wood, and gas. Carbon monoxide binds with haemoglobin in blood cells instead of oxygen, rendering a person gradually unconsciousness even at low concentrations.

Ozone

Whilst beneficial in the stratosphere, when found at ground level, ozone causes the muscles found in the respiratory system to constrict, trapping air in the air pockets, or alveoli. Ozone can be produced by certain air purifiers, laundry water treatment appliances and facial steamers.

Particulate Matter 2.5

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles are 2.5 microns or smaller. PM2.5 sources include transportation, power plants, wood and burning and can cause airway irritability, respiratory infections, and damage to lung tissue. 

Particulate Matter 10

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles is 10 microns or smaller. PM10 sources include construction sites, industrial sources, and wildfires. These inhalable particulates can obscure visibility, cause nasal congestion, and irritate the throat. 

Formaldehyde

A colourless gas that is flammable and highly reactive at room temperature. Formaldehyde is a carcinogen and a strong irritant. Formaldehyde can be found in building materials, resins, paints, and varnishes and can last several months particularly in high relative humidity and indoor temperatures.

Total Volatile Organic Compounds

Carbon-based chemicals that easily evaporate at room temperature, most commonly found in building materials, cleaning products, perfumes, carpets and furnishings. Long term exposure can cause, cancer, liver, and kidney damage whilst short term exposure can cause headaches, nausea, and dizziness.

Find out more about air quality at the BSRIA Air Quality Hub.

Heat Pumps and Heat Waves: How overheating complicates ending gas in the UK

by Dr Aaron Gillich | Associate Professor and Director of the BSRIA LSBU Net Zero Building Centre

We have entered what many are calling the decisive decade on climate action. Among the most critical decisions that the UK faces this decade is how it will eliminate carbon emissions from heat. Heat accounts for over a third of our emissions, and over 80% of our buildings are linked to the gas grid. There is no pathway to Net Zero that doesn’t include ending the use of gas as we know it in the UK.

Given the size of the UK gas grid, no single technology or energy vector can replace it. We will need a combination of clean electricity and carbon‐free gas such hydrogen or biogas, delivered by a range of enabling technologies such as heat pumps and heat networks. And of course an extremely ambitious retrofit agenda that reduces the demand for heat in the first place.

The UK is investing widely in low carbon heating innovation. That innovation is essential, but is also unlikely to include any blue‐sky breakthroughs that aren’t currently on the table. In other words, the menu of low carbon heating technology options is set, and this decisive decade will be about deciding what goes best where, and how to ensure a just and equitable heat transition.

Low-carbon heating options

Of all the low‐carbon heating options available, low carbon heat pumps are the most efficient and scalable option that is market ready and can respond to the urgency of climate change this decade. The UK has set a laudable target of installing 600,000 heat pumps per year by 2028. Many have criticized this figure as unrealistic, but I believe that the target is highly achievable, and represents a pace that is in line with past transitions such as ‘the Big Switch’ that put us on the gas grid in the first place.

This race to replace gas in the UK has been widely discussed. As have the many barriers that face heat pump deployment in the UK. What I’ve heard discussed far less are the links between heating in the winter and overheating in the summer. Over the next decade, the end of gas will present both a threat and an opportunity to improve both the winter and summer performance of our building stock.

The threat of climate change is clear. The end of gas increases this threat because gas has allowed the UK to obscure poor building performance, and poor building knowledge for so long. Cheap gas has enabled a ‘set it and forget it’ approach to many building systems, and allowed us to maintain reasonable standards of comfort in most buildings despite very poor fabric performance. The irony is that this poor winter performance actually helps reduce the risk of overheating in the summer, as the leaky and poorly insulated buildings can more easily shed excess heat. It has been widely reported that many newer, better insulated buildings actually face an increased risk of summer overheating.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss. There are many that argue heat pumps in fact require extensive fabric retrofit in order to function in most UK buildings. This is highly debatable and will be explored in detail in follow-up writings. Regardless, demand reduction and a fabric first approach is a good idea for its own sake.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss.

But reducing the heat loss in winter will likely trap heat in the summer, presenting a conflict. The UK currently experiences over 20,000 excess winter cold deaths and around 2,000 heat related deaths in summer. It was previously thought that the increased temperatures from climate change would decrease winter cold deaths, but more recent work has shown that due to the increases in extreme weather events at both ends of the spectrum, it is far more likely that winter cold deaths will remain at similar levels, and summer heat deaths will increase dramatically under climate change.

We must use the transition from gas to low carbon heating as an opportunity to better understand our buildings. Many of 600,000 heat pumps we install by 2028 will be in new build, but up to half will need to be from existing homes.

Retrofitting a heat pump is also the time to think about not only how to improve energy efficiency for the winter but how to reduce summer overheating as well. Despite much effort towards a whole‐house approach to retrofit, most work remains quite siloed. Energy efficiency and heating installations are largely in separate supply chains, and the building physics knowledge to carry out an overheating risk assessment is even less likely to sit with the same project team. Overheating is also very poorly captured by the building regulations and planning process.

A holistic approach

The last few years has seen a growing awareness of overheating risk and an emergence of increasingly easy to use assessment tools. A very small fraction of UK homes have comfort cooling. Retrofitting a comfort cooling solution typically requires costly and complex changes to distribution systems. However, there are a range of low cost options, including using local extract fans to create interzonal air movement, or using night purges and thermal mass. Blinds are also incredibly useful, but often misused in summer, and can also help reduce heat loss in winter. There are also ways to use local microclimate features such as shaded areas or the North side of the building to bring in slightly cooler air from outside and reduce peak temperatures.

Improving the air tightness and fabric performance of our buildings to address heating in the winter will change how we implement these solutions for the summer. They require not only careful thought at the design stage, but also strong communication to help end users operate them properly. Simply opening a window is unlikely to help if the outside air is warmer than inside.

A significant problem is that there are insufficient drivers to force this type of holistic approach to design, performance, and communication. It is so often said that we need stronger policies in the area of heat and retrofit, and this is no doubt true. But while we await these policies it is incumbent upon each of us in this sector to share and collaborate as widely as possible, and use whatever influence we have over a given project to encourage a fair and forward looking solution.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail. Climate change is the catalyst for an untold level of change in our lives that we are going to start to truly experience in the coming decade. Heating and overheating are coupled issues that must be solved together. We must use the end of gas as an opportunity to understand our buildings better, and implement solutions to climate change that work across seasons, or we risk trading one problem for another.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail.

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

District Heating and Cooling and Heat Interface Units are still closely tied markets

Socrates Christidis
BSRIA Research Manager – Heating and Renewables

District Heating and Cooling networks have witnessed significant growth in many European countries in the last five years and this is set to continue in the coming decade. Significant European policy initiatives, such as the Green Deal, country government promotions, alongside increased public and private investment are supporting new business models such as utilities selling heat as a service and not as a commodity, which will drive the market forward.

BSRIA research indicates that the share of heat pumps and Energy-from-Waste in district heating and cooling systems is increasing. This trend is in line with the development of the concept of 5th generation heat networks. These are demand driven and low-temperature networks, using locally available low-grade waste heat (A/C, datacentres, underground stations, etc.), low temperature renewable energy in bodies of water and solar energy instead of a central energy centre. In principle, such systems favour the use of substations at building level, but no heat interface units at the dwelling level, as these are likely to be replaced by heat pumps.

Currently industrial boilers and CHPs remain the main source of heating in District Heating networks. For instance, 85% of planned heat networks in the UK, will have a CHP as the primary source of heating and 50% will have a gas boiler as a backup. The remaining 15% will use geothermal, ground source or water source heat pumps.

Thus, in the short-term Heat Interface Units (HIUs) will remain the link between the apartment and the network.

Going forward, reducing demand for heating and increasing need for hot water and cooling imply that the market will see the uptake of:

  • All-in-one units (heating or cooling and hot water)
  • Cooling units
  • Hybrid units, with integrated electric water heating
Graph showing European HIUs market growth

The main threats for HIUs market progress are the currently lack of consistent quality of installation and COVID-19.

Heat interface units have a major impact on the overall performance of a heat network and successful operation and performance both depend on correct system design and specification, followed by competent installation and maintenance. This has been problematic, with systems inadequately designed and quite often oversized. We see some signs of improvements as the industry becomes more sensitised towards good quality district heating. Documentation is improving as well as codes of practice, testing of HIUs, and further testing on site; however, under tight budgets the emphasis is often for the lowest cost, specification compliant technology. Testing the unit in a lab and then onsite is optional but critical to ensure performance.

Closing of construction sites was the main impact of the Coronavirus pandemic, including lack of cash flow, as the invoicing is done when products are delivered onsite. The industry has also witnessed a lack of new orders from April to June, with some signs of recovery observed just after. Overall, the European sales in the first 6 months of 2020 were between 15% and 30% down, depending on country, when compared to the 6 first months of 2019.

Going forwards, new construction presents a slightly positive picture. During COVID-19 there has been delays but not cancellations in planning permissions; delays as sites operate under social distancing guidelines and some delays for new investment to come through. However, governments and authorities are still eager to go ahead with programs and incentives, with renewed emphasis on the environmental agenda.

Looking at estimations for completions of flats before and after the outbreak, the recovery is likely to accelerate in 2022, and the market is unlikely to recover before. The end of financial support schemes by governments (VAT deferral, loan schemes or furlough) is likely to have a negative impact on many businesses, including contractors. Indications are, that new build and residential sales will be hit harder than commercial ones. Southern Europe is also likely to struggle more, although recession is expected across most of European countries.

Taking all this into account, BSRIA sees the numbers of heat interface units growing steadily but at a single digit compound annual growth rate of just over 4% on a Pan-European basis. The market will become more diverse and will look for more flexible options to cater for high-end, electricity-only heating, mixed-used and communal areas.

To find out more about BSRIA’s District Energy and Heat Interface unit market studies contact us at:

How hard can opening a new office be?

As some of you may or may not be aware, the new BSRIA North site is now open for business.

For organisations opening a new office or site, it should be a time of great anticipation and excitement as the company sets out a new path, but for many they approach this process with fear and trepidation and for those tasked with the job of making it happen, it can potentially be an extremely stressful period of time.  As Project Manager for the setting up of BSRIA North, I thought I would share with you my experiences – the very good, the sometimes bad and the occasional ugly!

This blog was written by June Davis, Business manager of BSRIA North

I will be sharing my experiences and tips on:

  • Identifying and interpreting the business requirements
  • How to determine the must have’s versus the nice to haves
  • The importance of establishing an internal project team – you can’t do this alone!

BUSINESS NEEDS

When establishing the business needs, spend time with colleagues from across the organisation to listen and understand what they would like to see from a new base – what is it about the current environment that works, what doesn’t work so well and what would improve their working environment if only it were possible!

Everyone one I spoke to was really keen to give me their wish lists and as I started to jot their ideas down, some similarities started to emerge, but for some their thoughts varied significantly.    Prioritise the must haves and rationalise the nice to haves and a vision of your new building will start to emerge.

TIP don’t lose those more obscure requests. Whilst on this occasion I couldn’t deliver a building that had an on-site wind turbine, I was able to deliver on the overhead gantry crane!

TIP:  to fulfil everyone’s requirements you would most likely need to commission a bespoke building, so make sure to manage expectations!

Internal Project Team

You can’t succeed on your own so it is imperative that you establish an internal project team.  Working with business managers from across the organisation proved a valuable source of knowledge and support.  Individual managers were allocated areas of responsibility spanning right across the project and each were tasked with identifying what needed to be done , this formed the basis of a project plan.

Example project areas:

·         Property

·         Fit out

·         Process/Systems

·         Health & Safety

·         Quality

·         Marketing

·         People

 

Ensuring the team communicated regularly weekly meetings were held and if on occasion some colleagues were unable to attend it ensured that we kept abreast of developments – or on occasion the lack of!

Select a property

It seems obvious, but finding the right property in the right location and that meets the detailed specification your colleagues have challenged you with can at times feel like finding a needle in a haystack. This is where the word compromise well and truly comes in to play!  Give yourself a sizeable geography in which to search for property – like you, everyone wants it all, so make sure you keep an open mind and research those properties that at first glance you would dismiss as not meeting your criteria.   What you think you need and what you finally agree is ‘the one’ may well prove to be completely different – it did for us!

TIP The more sites I visited the more ideas I collected as to what could work and might be achieved!

 TIP:  Draw up a short list of buildings and compare them to your must have list – is there a property that is starting to lead the way?

TIP:  Engage one of your project team to come with you to revisit your top properties – they will bring a new perspective to things.

TIPIf possible, establish a good relationship with the previous tenant, in our experience they were really helpful in providing information about the building, how it operated and its history!

The legal process can take quite some time, it was certainly longer than we had anticipated; but don’t underestimate this vital element of the journey. It is critically important that your future building has the correct legal foundations in place, so ensure you seek good advice.

With the legal aspects complete we gained possession of the building and we all got a much-needed motivation boost! The project team visited the site to design the layout and agree what renovations needed to be made.  The vision was taking shape!

Renovations and installations!

Be ready – This is an extremely busy period.  Obtaining quotes, liaising with contractors, arranging building services are just a handful of the tasks at hand. I found that having someone local to the site with good local knowledge is hugely helpful.  Access can be required at various times of the day and sometimes night but with the building not yet fully functional requires a lot of coming and goings to site.   Ensure the alarm systems are serviced and activated and site security implemented.

TIPTake your readings!  Ensure you capture the utility readings on day one and contact the associated providers to inform them you are the new tenants submitting the readings.  This should be a straightforward exercise I can assure you it isn’t, so be warned!

 

For those who may be undertaking a similar process either now or in the future, I wish you every success.  My recommendation is to ensure you appoint the right person to lead the project, a person who loves to do detail, enjoys multi-taking, doesn’t mind getting their hands (very) dirty, and has the patience of a saint and most importantly a good sense of humour!

BSRIA North is proud of what has been achieved and we forward to welcoming you through our doors – please visit us any time!

TRANSFORMATION OF THE OFFICE

 

 

 

 

 

 

 

Construction Leadership Council – study into labour markets & off-site

This blog was written by BSRIA Chief Executive Julia Evans

This blog was written by BSRIA Chief Executive Julia Evans

Exciting times: leading on from BSRIA’s press statement issued on 3rd February: the Construction Leadership Council (CLC) has been asked to undertake a “major” labour market study by skills minister Nick Boles MP and housing minister Brandon Lewis MP.

BSRIA is encouraging member and industry input from to the accompanying CLC consultationconstruction industry labour model study

Evidence to: construction.enquiries@bis.gsi.gov.uk

Deadline: Monday 29th February 2016.

The CLC has invited Mark Farmer of Cast Consultancy (formerly Arcadis) to lead the study, culminating in a report for CLC’s consideration in the spring. It will both: reflect on the impact of the current “labour model” in construction and make recommendations for action by the industry and government to help overcome constraints on skills development and the sector’s capacity to deliver new homes and infrastructure.

In particular, ministers want to know whether there are structural issues and risks that diminish long-term incentives for smaller subcontractors, who employ the largest part of the sectors workforce, to invest in training.

As I said earlier this month: BSRIA is very much supportive of this commission and consultation and, on behalf of the industry and our members, wishes to be involved every step of the way. Such commission hasn’t come a day too late, especially with rising demand especially, but not only, in the house building sector.

Alternative delivery methods – such as off-site – with a fresh skills base and capacity to bring new entrants to home building supply chains signifies a “shifting focus”.

 The consultation requests:

  • Evidence of how the construction labour model and recruitment practices impact on incentives for skills development in the sector (including in the supply chain) and on the introduction of more novel techniques such as off-site construction.

Evidence on how the current model works – including:

  • What business models and other arrangements could better support skills and skills pipelines in the sector?
  • What measures could improve wider incentives for capacity investment and the introduction of new ways of working?
  • What are the barriers and enablers to greater use of off-site construction?
  • How could the range of participants in the UK housing market be broadened, including through the better introduction of institutional funds?

So, I urge “one and all” to take a few minutes to put “comment to keyboard” for this crucial study. Remember: little can change without your expert opinions!

Betting on the general election? Think again

This post was written by Julia Evans, BSRIA Chief Executive

This post was written by Julia Evans, BSRIA Chief Executive

There are number of ways of predicting the outcome of the general election and an equal number of ways of being wildly incorrect. Bookmakers across the land are considering the 7th May to be a field day equal only to the Grand National in terms of punter cash finding its way through the betting shop door and not finding its way out again.

The one thing that seems sure is that the outcome is likely to be uncertain with both a three way coalition and a rerun of the election in the Autumn both being seen as possibilities.  So, where does that leave construction and building services?

Just as education and the health service are perennials in political manifestos so construction has some constant themes. Although construction rarely makes front page news there are a number of issues that seem likely to make the political headlines. Maybe for reasons of one-upmanship, as in who is promising to build the most houses? It’s the Liberal Democrats, since you ask; who are promising 300,000 new houses a year and an assurance that they’ll all be energy efficient. Or the startling alignment and collaboration between the three main political parties who are promising to work together on climate change, which in itself is surely not a bad thing?

But what of the perennials that effect construction?

Representation at senior levels seemed threatened at one point by questions being asked about the continuation of the role of Chief Construction Advisor, this is now resolved at least for the next two years. However other things are less easy to solve – the impending skills shortage, the delivery of low carbon retrofit and the lurking influence of increasing devolution will all play their part. As will continuing pressure on late payment practices, poor treatment of supply chain and the weakening of centrally funded research programmes.

The uncertainty caused by the impending election has been felt in the slackening of demand for construction since the turn of the year, the recent results of our quarterly consultants survey suggested that there has been a halt in new work as we wait for a new government. This has also been seen in a reduction in the immediate pre-election period of house building starts just at a time when we need to be addressing the national shortfall.

So back to my punt at the bookies, I think I will put my money back in my pocket and find something more predictable to spend it on, maybe something in preparation for the barbeque summer?

Using Robotic Total Stations to drive down the cost of construction

Since the days of the Latham report in 1994 there has been a desire to cut the cost of construction, mainly by finding more efficient ways of doing things. Of course, there will always be people who stick rigidly to the principle that ‘the old ways are the best’, but there are many more who are more open-minded – not least in terms of making use of new technologies.

Having said that, there is one particular technology that has not yet been embraced in the UK, despite the significant financial and time benefits that have been shown time and again in the USA and other countries.

I am referring to the use of Robotic Total Stations (RTSs) for laying out building services – as an alternative to the traditional ‘tape measure, spirit level and theodolite’ approach.

This blog considers the limitations of traditional methods and explains how RTS technology can help to overcome them. It also explores some of the reasons that this technology has not yet been widely adopted in the UK.

Are the old ways the best?

Traditionally, the layout of building services on site has involved a team working from the building drawings, using a tape measure, spirit level and theodolite to identify attachment points for pipework, cable trays etc.

Unfortunately, this system doesn’t work particularly well with complex buildings, buildings with curved walls, buildings with prefabricated materials, BIM or non-orthogonal spaces. In fact there is a huge margin for error, resulting from the following challenges:

  • Ensuring the reference point is right
  • Making sure the tape measure doesn’t move
  • Making sure the string doesn’t move on arcs
  • Ensuring the theodolite is level
  • Making sure the degree in which you are measuring is exact

Every small mistake can lead to potentially serious consequences. For example, being a few degrees out on an angle can mean that pre-fabricated systems don’t fit when the time comes to install them.

Similarly, incorrect layout can result in clashes with other building elements or services, thereby disrupting the construction schedule, generating remedial works and wasting materials, time and money.

Even when everything goes smoothly, the traditional approach is laborious and time-consuming and any delays can affect the work of other teams.

Plus, when changes need to be made, methods of recording reasons (obstruction etc.) and evidence (photographs etc.) are recorded additionally to any drawings they are working from.

These reasons are sometimes reported to the design team (if there is one) to amend the drawings or model; at other times, these records are filed separately for the purposes of finger-pointing at a later date.

Either way, it takes a long time for this information to be reflected in the designs, if at all, which means other contractors or labour forces won’t see the changes until they’re updated.  Working from paper also has the potential for loss or damage.

Furthermore, these issues are going to become more serious with the wider use of Building Information Modelling.

An alternative approach

Robotic Total Stations (RTS) allow layout to be completed by only one person, rather than the classic layout team.

To begin construction layout, a tablet with software controls the RTS and is loaded with a 2D drawing or 3D building model. Site survey points from the job site are identified in the model and are used to locate the RTS on the project site and in the model.

Once the RTS is located, the person operating the RTS can view the model on the tablet computer and select the points to be marked.  Once selected, the RTS will tell the operator their precise distance from the point (if using a stake) and then guide the user to the point with directions indicating forward/backward or left/right movement.  The operator then stakes the mark and moves to the next one.

A more advanced RTS feature is Visual Layout  which marks the layout point with a laser (removing the need for the stake); the operator then only has to follow the laser to each point and mark the location.

Basically, the RTS does all the work while the operator follows its laser, marking each point to within a distance of millimetres from the 2D/3D model point.

This can be used for the accurate positioning of multiple trades at the same time, ensuring no delays on site.

So what are the benefits?

Improved efficiency.

RTSs use the same 2D drawings or 3D building models as other trades involved in the project, so collaboration is simpler and quicker.

Enhanced accuracy.

Layout coordinates can be accessed directly from the building model and changes to layout positions can be recorded at the time of layout and documented with reasons and photographs.

Fewer mistakes.

The RTS works directly from the building model. There are no manual measuring processes involved. Points to be marked are extremely accurate and their purpose is referenced to the operator via their tablet device.

Reduced paperwork.

Using the RTS on a job is a paperless process, meaning there is no risk of losing documents or spilling coffee on them.

Reduced labour costs.

The RTS only needs one person to operate it and that one person is also capable of increasing layout productivity by up to five times.

Improved quality control.

RTSs can be used as a sophisticated tool in a QA/QC process, both pre- and post-installation.

BIM-to-Field

As we move to more sophisticated BIM processes – such as 4D & 5D BIM that includes building production models and which consider the constraints of a construction site (equipment capacity, working methods etc.), model based estimating and more – a live link to the field is needed.

This link, in part, can be provided with the use of an RTS, allowing responsible parties to track works as they are completed and referenced against the original model, applying changes where necessary and allowing the tracking of works ready for access by the next stage in the construction process.

So why aren’t we using them?

Companies across the US have used RTSs on construction sites for many years now. They’ve been highly popular with MEP contractors and revolutionised layout processes and BIM progression; so why don’t we use them?

A lot of it simply comes down to misconceptions about the technology and its uses.

Return on investment.

Implementing RTS technology requires capital investment and many companies feel that because they don’t have dedicated layout teams they won’t see a good return on their investment.

However, the relative simplicity of RTS technology means that any member of the MEP team can carry out accurate layouts, so the contractor can make better use of the workforce.

Also, RTS eliminates manual errors so that the most highly skilled and best trained individuals can be allocated to the more complex tasks, while lower skilled operatives do the laying out.

In addition there are considerable time savings that could ultimately reduce the number of operatives required on the project, thus reducing labour costs.

You can calculate your own ROI here

The savings cited for RTS do not have any real impact on the bottom line.

This is simply not true. Savings from the use of an RTS can be seen in:

  • Reduced remedial works due to increase in QC/QA documentation and recording – an immediate reduction in cost.
  • Improved efficiency whilst on site – reduction in labour cost.
  • Fewer errors in MEP element locations (another remedial work saving) – an immediate reduction in cost.
  • Reduced resource required to complete works – an immediate reduction in cost.

MEP designs evolve during installation so that the drawings do not represent the actual situation.

Perhaps this is true today, but if you are working this way now, you won’t be for long. For medium and large projects MEP data and detailed design will be as essential as structural design as the industry assimilates the BIM process.

UK BIM deadlines are looming now and businesses looking to grow, or large businesses looking to remain profitable, will need to ensure they can work in these parameters – and soon.

Clashes between services do not occur when the same contractor is doing all of the MEP work.

On small projects it is often possible to ‘work around’ any clashes between services. However, on larger projects it is not enough to ask for one element to be placed over/below/around another, as this may then run into a second clash with a third element.

This second work around would involve a wider rectification, which may infringe on another element, and so on until a solution cannot be made.  Eventually, it may occur that an MEP element then interferes with the installation of another contractor’s or team’s work.

Also, when ‘working around’ an issue, we create problems when considering building maintenance post-construction, as MEP elements will deviate from their logical course.

UK construction techniques do not lend themselves to using an RTS.

While it’s true there are some differences between UK and US construction methods, there are many more areas where RTS can deliver the same benefits to UK contractors as it is already doing for US contractors.

Conclusion

While any investment in new technology clearly requires careful consideration, I hope it is now clear for the reasons stated above that RTS is certainly worthy of that consideration. The potential benefits to MEP contractors are enormous, so surely it’s worth taking the time to keep an open mind and take a closer look.

Follow this link to see a demonstration video or, if you’d like to see this technology in action, book onto a Trimble road show event to compare this with a traditional approach.

Author Profile
This blog was written by Chris Slinn, MEP Business Development at  Amtech, a Trimble company, a manufacturer of specialist software for the building services industry.

The BIM Level 2 jigsaw – nearly complete?

The Level 2 programme was defined in the BIM Strategy which is available at  www.bimtaskgroup.org

The Level 2 programme was defined in the BIM Strategy which is available at
http://www.bimtaskgroup.org

In my blog article back in June  I discussed how the UK Government had refined its Level 2 BIM requirement and express it in the form of compliance with seven components:

  1.  PAS 1192-2:2013 Specification for information management for the capital/delivery phase of construction projects using building information modelling
  2. PAS 1192-3:2014 Specification for information management for the operational phase of assets using building information modelling
  3. BS 1192-4:2014 Collaborative production of information. Part 4: Fulfilling employers information exchange requirements using COBie – Code of practice
  4. Building Information Model (BIM) Protocol
  5. GSL (Government Soft Landings)
  6. Digital Plan of Work
  7. Classification

Since then BS 1192-4 has been published, leaving just the Digital Plan of Work and Classification elements to be completed.  As reported previously, these were the subject of a TSB-funded competition and I thought it would be useful to give an overview of how the competition went and where it is now.  This is a fundamental piece of work that is set to have a huge impact on BIM in the UK and it is vital that as much of the industry as possible has an awareness of what is happening, and get involved wherever possible to help make it a success.

The competition brief was developed, with industry consultation, and has been administered via the Innovate UK (formerly TSB) SBRI programme under the title “A digital tool for building information modelling”.

The competition process involved two phases – Phase 1was a feasibility study, with organisations or consortia invited to submit proposals with funding of up to £50k (including VAT) available to each.  Three teams were awarded these phase one contracts:

  • RIBA Enterprises Limited, together with BIM Academy, BDP, Laing O’Rourke, Microsoft and Newcastle University
  • BRE Global Limited, with buildingSMART UKI
  • CIBSE on behalf of a group of industry professional bodies known as C8, consisting Association for Project Management (APM), British Institute of Facilities Management (BIFM), Chartered Institution of Building Services Engineers (CIBSE), Chartered Institute of Building (CIOB), Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE), Royal Institute of British Architects (RIBA) and Royal Institution of Chartered Surveyors.

The results of the Phase 1 stage can be seen here.

On completion of Phase one, two of these submitted bids for Phase 2 – RIBA Enterprises Limited and BRE Global Limited, and RIBA Enterprises Limited was awarded the single Phase two contract.

At the time of writing, the results of the Phase two competition had not been posted on the Innovate UK website so it has not been possible to compare what RIBA Enterprises has said it will deliver with the functional specification.

As RIBA Enterprises has developed Uniclass2, which it uses for some of its other software tools, it is probably safe to assume that the classification solution delivered as part of this competition will be based on that format.  That being the case it will be interesting to see how Uniclass2 is developed to cover all necessary instances, and not just those which may occur within the 3D model.  The classification system needs to be capable of capturing everything which may be held within the common data environment (CDE) in order to make the objectives of the standards such as PAS 1192-2 and PAS 1192-3 a reality – the PIM during construction and AIM during operation being the sole sources of information for further use, having been verified and validated against the EIRs and OIRs.

Many experienced BIM practitioners recognise the need for a comprehensive classification system to make information available throughout the life of an asset, letting it be used time and again rather than having to recreate it, and this project could make this a reality.  However, careful thought needs to go into it to make sure that everything that needs to be classified can be, and in a way that can be understood.

Safety in Building Services Design

This is a guest post by Richard Tudor of WSP

This is a guest post by Richard Tudor of WSP

Space, and the cost of providing space, for plant and building services  distribution is at a premium and designers often come under pressure to reduce the spatial requirements for building services installations. In order to discharge their obligations, designers must take care to provide safe means of access for installation, maintenance and equipment replacement.  In addition designers need to be aware of the regulations and legislation requirements that a design may impose on the installer and end user as a design solution can often impose additional legal

responsibilities, particularly in undertaking associated operation and maintenance activities. However, the active and continuing attention to safe access issues, throughout the design stages, is not always achieved as the designers’ attention can often concentrate on what is perceived to be more immediate concerns.

BSRIA’s publication Safety in Building Services Design BG55/2014 has just been published which provides guidance on designing for safety in both new and refurbishment projects.

The publication is aimed at designers and includes information on:

  • relevant legislation including CDM
  • hazards and risks including managing risk in the design process
  • understanding space requirements and access provision
  • designing for maintenance
  • plant room design
  • communication of risk information including representation of risk information on drawings

BG55/2014 Safety in Building Services Design

BG55/2014 Safety in Building Services Design

However, the diversity in type, configuration and possible location of plant, means it is not possible for this publication to give definitive guidance for all installations.

The publication provides a practical guide to assist the design process, aid design reviews together with providing a better understanding in designing for safety.  For example, included in the publication is a checklist on the considerations in designing for health and safety which can be used as part of the technical design quality review process.  In the pdf version of the publication this is included in an editable Excel format. Influencing factors, considerations and space requirement data useful in the design decision process with respect to providing safe access are highlighted in the publication.

The poor provision of safe access for maintenance could result in an increased likelihood of cutting corners or omission of maintenance and repair activities. This in turn, could result in building services failures that could adversely affect safety, legal compliance, productivity and quality of the environment.

BSRIA launches a new course on the 12th November 2014 providing guidance in designing for health and safety in the space planning of building services with respect to operation, maintenance and plant replacement. The course is intended for professionals involved in the design of building services but is equally relevant to contractors and other professionals within the industry. Young engineers in particular would benefit from the course.

On completion of the course delegates will be able to:

  • understand the specific considerations with respect to designing for safety for building services
  • identify discipline specific considerations in designing for safety
  • challenge designs in relation to health and safety in the design, construction and operations of building services so as to improve performance
  • understand relevant H&S legislation, codes of practice and guidance
  • understand the relationship between building services design and maintenance operations
  • understand the management of hazard and risk together with control strategies
  • locate information relating to health and safety to assist in design process
  • understand the consequences of failing to manage health and safety effectively
  • understand the importance of communication and provision of information in the design process

Richard Tudor is a Senior Technical Director at WSP and has been an integral part of the WSP Group Technical Centre for over 14 years. His responsibilities include technical quality, specification development, technical knowledge management, delivering training, designing for safety, providing technical support, and improving project delivery.

%d bloggers like this: