Indoor air quality: 7 contaminants to be aware of

In the UK, on average people spend more than 90% of their time indoors.

Indoor air quality is affected by outdoor pollution, but also by indoor sources and inadequate ventilation. Air pollution can have a negative impact on our health; from short term effects such as eye irritation and coughs to long term effects such as respiratory infections and cancer.

Here, we take a look at contaminants commonly found in buildings. For more information on how to manage indoor air quality, please visit the BSRIA Air Quality Hub.

Carbon Dioxide

A colourless and odourless gas resulting from combustion and breathing. At higher concentrations carbon dioxide can cause drowsiness, fatigue, and dizziness as the amount of oxygen per breath is decreased. In an enclosed environment, ventilation is key to reduce carbon dioxide build-up.

Carbon Monoxide

An odourless and colourless gas produced by incomplete combustion of fuels such as oil, wood, and gas. Carbon monoxide binds with haemoglobin in blood cells instead of oxygen, rendering a person gradually unconsciousness even at low concentrations.

Ozone

Whilst beneficial in the stratosphere, when found at ground level, ozone causes the muscles found in the respiratory system to constrict, trapping air in the air pockets, or alveoli. Ozone can be produced by certain air purifiers, laundry water treatment appliances and facial steamers.

Particulate Matter 2.5

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles are 2.5 microns or smaller. PM2.5 sources include transportation, power plants, wood and burning and can cause airway irritability, respiratory infections, and damage to lung tissue. 

Particulate Matter 10

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles is 10 microns or smaller. PM10 sources include construction sites, industrial sources, and wildfires. These inhalable particulates can obscure visibility, cause nasal congestion, and irritate the throat. 

Formaldehyde

A colourless gas that is flammable and highly reactive at room temperature. Formaldehyde is a carcinogen and a strong irritant. Formaldehyde can be found in building materials, resins, paints, and varnishes and can last several months particularly in high relative humidity and indoor temperatures.

Total Volatile Organic Compounds

Carbon-based chemicals that easily evaporate at room temperature, most commonly found in building materials, cleaning products, perfumes, carpets and furnishings. Long term exposure can cause, cancer, liver, and kidney damage whilst short term exposure can cause headaches, nausea, and dizziness.

Find out more about air quality at the BSRIA Air Quality Hub.

Taking action on Climate Change

by Michelle Agha-Hossein, BSRIA Building Performance Lead

Most nations now recognise climate change as an established, perturbing fact that needs immediate attention. We can see the effects in the worsening and more frequent extremes of weather: flash floods, droughts, strong winds, heavy snow, heat waves, etc.

UK temperatures in 2019 were 1.1°C above the 1961-1990 long-term average and it was a particularly wet year across parts of central and northern England. Still fresh in the memory are storms Ciara and Dennis in February 2020 with strong winds and heavy rain that caused significant damage to homes and commercial buildings. There is growing evidence that periods of intensely strong winds and heavy rain are likely to increase in the future.

The UK is not the only country affected by climate change. Many other countries are (and will be) suffering disproportionately. The world’s leading climate scientists have warned that we might have just 12 years to keep global warming at a maximum of 1.5°C. After this point, the risk of extreme weather conditions will significantly increase. The increased frequency and intensity of extreme weather will affect all but is most likely to bring catastrophic consequences in many less economically developed countries, where food shortages and water scarcity can trigger deep social changes.

Immediate radical action is required to limit carbon emissions, and the built environment industry can play a crucial role by changing the prevailing culture.

Most building-related carbon emissions are generated from energy use in buildings. However, there are choices that building owners/operators can make and initiatives that they can undertake to lessen the related negative impact on the environment:

In brand new buildings, the most effective way for addressing emissions is reducing consumption through energy efficient design. In existing buildings, the issue can be addressed by efficient retrofitting and effective maintenance strategy. Adopting renewable energy technologies in both cases can significantly reduce building emissions.

Steps building owners and operators can take today.

There are several initiatives/activities that can help building owners/operators combat climate change:

  • Consider ‘net-zero carbon’ targets for your building: UKGBC launched its Advancing Net Zero programme in 2018 and published the ‘Net Zero Carbon Buildings: A Framework Definition’ in 2019. The framework provides the construction industry with clarity on the outcomes required for a net zero carbon building.
  • Ensure the required outcomes for a ‘net-zero carbon’ building are achieved: As advised by UKGBC in the framework definition, initiatives like BSRIA Soft Landings should be adopted in new build as well as in refurbishment projects to ensure a net zero carbon building will be achieved. The BSRIA Soft Landings framework provides a platform for project teams to understand the required outcomes for their project and ensure all decisions made during the project are based on meeting those outcomes.
  • Maintain your net zero carbon building effectively: Business-focused maintenance is a methodology developed by BSRIA that can be adopted to help building operators maintain critical assets effectively and efficiently to sustain a net zero carbon building within budget.
  • Investigate failure quickly: Is the energy bill for your building higher than it should be? Investigate the problem as soon as you can. The first and easiest step would be looking at the energy end use breakdown to see which areas are using more energy than expected. If the issue is related to the HVAC system, check the system’s setting points and monitor the indoor air temperature and relative humidity. Thermal imaging of the fabric of the building can also help to identify, thermal bridging, missing/damaged insulation and areas of excessive air leakage.
  • Promote a healthy diet among building occupants: This is a non-technical initiative that building owners/operators can adopt in their buildings. Eating less meat and gradually shifting to more plant-based foods is vital for keeping us and our planet healthy.  It is important to think about initiatives such as using signage or lunchtime talks, to educate building occupants about healthy diets and encourage them to eat more fruit and vegetables. Research has shown that adhering to health guidelines on meat consumption could cut global food-related emissions by nearly a third by 2050. Healthy diet is also supported by Fitwel and the WELL building standard.

Building owners and operators, to play their role in combating climate change, should ensure their decisions and the way they create and run their buildings contribute positively to the wellbeing of our planet and its citizens.

So, make a start today and choose the first thing you are going to assess/change in your building to help combat climate change.

To find out more about how BSRIA can help you improve building performance, visit us here.

The wellbeing and environmental effects of agile working

by David Bleicher, BSRIA Publications Manager

How many times in the last few months have you started a sentence with “When things get back to normal…”? For those of us whose work mostly involves tapping keys on a keyboard, “normal” implies commuting to an office building five days a week and staying there for eight or more hours a day.

When lockdown restrictions were imposed, things that were previously unthinkable, such as working from home every day, conducting all our meetings by video call, and not having easy access to a printer, became “the new normal”.

One thing the pandemic has taught us is that changes to our work habits are possible – we don’t have to do things the way we’ve always done them. Since lockdown, agile working has been high on companies’ agendas; but agile working has a broader scope than flexible working. It is defined as “bringing people, processes, connectivity and technology, time and place together to find the most appropriate and effective way of working to carry out a particular task.”

Working from home with a cat

The triple bottom line

Agile working is indeed about much more than changing people’s working hours and locations. It’s about how people work – becoming focused on the outcome rather than the process. It’s about making the best use of technology to achieve those outcomes and it’s also about reconfiguring workplaces to better suit the new ways of working. But, when considering these outcomes, we should be looking further than the financial bottom line. The term triple bottom line is a framework that also brings social and environmental aspects into consideration.

How, when and where people work has a major impact on their wellbeing. The past few months have served as an unintentional experiment in the wellbeing effects of mass home working. Some people are less stressed and more productive working from home, providing they have regular contact with their colleagues. Other people – particularly those who don’t have a dedicated home working space – returned to their offices as soon as it was safe to do so. It depends on the individual’s preferences, personal circumstances and the nature of the work they do.

On the face of it, it would seem that increased working from home or from local coworking spaces would be a win-win for the environment. Less commuting means fewer CO2 emissions and less urban air pollution. But a study by global consulting firm and BSRIA member, WSP, found that year-round home working could result in an overall increase in CO2 emissions.

In short, it reduces office air conditioning energy use in the summer, but greatly increases home heating energy use in the winter – more than offsetting carbon savings from reduced commuting. Perhaps what this highlights most is just how inefficient the UK’s housing stock is. If we all lived in low energy homes with good level insulation and electric heat pumps, the equation would be very different. Perhaps a flexible solution allowing home working in summer and promoting office working in winter would be best from an environmental perspective.

A possible long-term effect of increased home working is that some people may move further away from their offices. For example, someone might choose to swap a five-days-a-week 20 km commute for a one-day-a-week 100 km commute. If that is also a move to a more suburban or rural location with more scattered development, less public transport and fewer amenities within walking distance, then (for that individual at least) there’ll be an increased carbon footprint. Not very agile.

Impact of technology

There’s another aspect that may not yet come high up in public awareness. Remote working is dependent on technology – in particular, the video calls that so many of us have become adept at over the past few months. All this processing burns up energy. The effect on home and office electricity bills may be negligible because the processing is done in the cloud. This isn’t some imaginary, nebulous place. The cloud is really a network of data centres around the world, churning data at lightning speed and, despite ongoing efforts, still generating a whole lot of CO2 emissions in the process. Videoconferencing definitely makes sense from both an economic and environmental perspective when it reduces the need for business travel, but if those people would “normally” be working in the same building, isn’t it just adding to global CO2 emissions?

We don’t yet know what “the new normal” is going to look like. Undoubtedly, we’re going to see more remote working, but responsible employers should weigh up the pros and cons economically, environmentally and socially. Terminating the lease on an office building may seem like a sensible cost saving, but can a workforce really be productive when they never meet face-to-face? Does an activity that seemingly reduces CO2 emissions actually just increase emissions elsewhere? Any agile working solution must take all of these things into account, and not attempt a one-size-fits-all approach to productivity, environmental good practice and employee wellbeing.

For more information on how BSRIA can support your business with energy advice and related services, visit us here: BSRIA Energy Advice.

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

Acoustics in the workplace – What’s the “new normal”?

Rebecca Hogg
Acoustic Consultant, BSRIA

Wooden blocks spelling 'new normal'

There is no denying global events this year have turned every aspect of our lives upside down, and as we all start to try and get back to normal while lockdown restrictions ease, we realise it is a “new normal”.

Workplaces have changed, some almost unrecognisable from before, and there is a myriad of requirements to consider beyond the essential health and safety measures. Occupant wellbeing was a prominent consideration prior to lockdown, and this included provision of a good acoustic environment, but how are new COVID-secure workplaces affecting the acoustic environment?

For many years there have been acoustic standards and guidelines on internal noise levels in offices, determining sound power levels of building plant, and predicting the sound absorption of materials. Well designed open-plan offices have allowed large groups of people to collaborate and communicate effectively, and noise regulations have ensured factories and construction sites operate without disturbing neighbours.

In recent months, the workplace has been turned on its head. Following government guidelines many people began working from home. Suddenly the familiar hum of the workplace was replaced in some instances with squabbling children or impatient pets, and if you live alone maybe unwelcome silence replaced your usual face-to-face conversations.

As people are gradually allowed to return to a place of work, new COVID-secure offices have changed the acoustic environment. The installation of screens, the partitioning of open plan spaces, wearing of face coverings, and a lower level of occupancy have created acoustic challenges. For example, speech intelligibility is affected by the reverberation time of a space. Fewer people and more reflective materials, such as plastic screens, will decrease the sound absorption and increase the reverberation time, resulting in poorer speech intelligibility.

Building services have been specified, installed, and commissioned for a particular set up of a workplace layout and building occupancy. If a space is divided into individual offices to allow for social distancing, then the building services provision also needs to be reconsidered. Changing the control settings of a system will have an impact on the internal noise levels and subsequently on levels of occupant annoyance.

Not everyone works in an office, so, what about situation in different workplaces? Factories, shops, and construction sites have been redesigned to allow for social distancing, and often operating hours have been extended to allow for shift patterns, potentially increasing noise nuisance for neighbours.

In these environments the noise levels are also often higher and communication between people can therefore be harder. People working further away from each other and wearing face coverings will inhibit successful communication and influence performance, and if someone must shout to be heard does this have the potential to spread virus droplets further? There should also be consideration of the highly overlooked 12 million people in the UK who suffer from some level of hearing loss. Being unable to lip read because someone is wearing a face covering, or unable to hear the conversation over a bad video conferencing link is incredibly frustrating and isolating.

The acoustic challenges within a COVID-secure workplace may seem overwhelming but there are several simple solutions. Firstly, identify noise sources in the workplace and maintain them appropriately to minimise background noise.

Something as simple as cleaning filters inside a fan coil unit can increase airflow and capacity, meaning the fan speed can be reduced and subsequently the noise level.

Secondly, examine acoustic specifications of any new products being installed – ask to see test reports and consider how a new product could influence the acoustic environment.

Finally, consider the occupants of your workplace and how they use the space. Tailoring the acoustic environment to the needs of the occupants can increase productivity, decrease annoyance and overall improve the wellbeing of all. The focus on workplace safety is paramount, but long-term considering other design parameters, such as the acoustic environment, will ensure workplaces not only survive but thrive.

BSRIA acoustic experts publish guidance, and support our members and clients with a range of acoustic testing solutions. Read more about our UKAS-accredited laboratory for acoustic testing to BS EN ISO 3741, BS EN 12102 and BS EN ISO 354 here.

Thermal Imaging Camera Applications in Business Focused Maintenance

Today the modern built environment faces many challenges with organisations expecting the reliability of services to continuously improve with cost savings being made due to reducing maintenance regimes. Down-time can be extremely costly to a business in lost income, therefore mission critical services must not be disrupted by failure. Historically businesses have used generic planned preventative maintenance schedules, maintaining plant in the same way regardless of its level of use and value to the business.

 

Identifying that there was clearly a smarter risk-based approach to maintenance BSRIA published its Business Focused Maintenance (BFM) methodology back in 2004, this was updated in 2016 with the BFM Guide (BG53/2016) which is available from the BSRIA bookshop. BFM provides engineers with a methodology for utilising maintenance budgets more effectively. Assets critical to the business are maintained, while other less critical assets are managed as well as possible within the available budget. By assessing and prioritising plant maintenance needs for risks and criticality to the business, engineers and managers can ensure their maintenance effort is focused, cost-effective and increase their resilience to engineering risk.

 

Typical thermal images of engineering plant used to identify and monitor potential failures

 

BFM plant maintenance requirements will require instrumentational monitoring and one of the most widely used monitoring methods is thermal imaging. This has many applications including showing faults in thermal insulation, electrical installations and mechanical plant. Thermal imaging cameras are indispensable tools for engineers, they provide a non-invasive, user-friendly and cost-effective solution to maintenance testing.

“with the user-friendliness and wealth of applications for modern thermal imaging cameras, you don’t need to be an expert, employ a consultant or have large budgets to get the instant images you need. We work closely but independently with a wide range of equipment suppliers which means we can provide solutions to meet our customer’s specific needs. We can supply a wide range of thermal imagers from entry level units up to state-of-the-art professional cameras and all at an affordable price.

We recognise our client’s needs are time critical and we have equipment available for hire and sale direct from stock or with short lead times. In processes where plant failure can cause down-time that can potentially cost millions of pounds in lost income it is imperative that critical building services must never be disrupted by failure. We pride ourselves on providing fit-for-purpose, user friendly and cost-effective equipment”.

BSRIA Instrument Solutions is a leading supplier of specialist test and measurement instruments since 1990 and can assist engineers from all industries in selecting instruments that meet and exceed their expectations. It has built its reputation by providing the most reliable and advanced test equipment from leading manufacturers supporting it with a high level of customer service they can offer a choice of thermal imaging solutions with products from the leading instrument manufacturers.

For further details of the Instrument Solutions equipment hire, sales and calibration capabilities visit www.bsria.co.uk/instruments or call our team on Freephone 0800 254 5566 (UK) or +44 (0) 1344 459314.

Lighting: the low hanging fruit of energy efficiency

Peter Hunt, COO, the Lighting Industry Association

Peter Hunt, COO, the Lighting Industry Association

Rising efficiency standards in LED technology and falling purchase prices mean that businesses can now expect a shorter pay-back on their investment according to Peter Hunt, chief operating officer at the Lighting Industry Association.  We caught up with him ahead of the launch of the lighting hub at edie Live 2016 which will showcase the latest developments in energy-efficient technology.

Energy-efficient lighting products are particularly well suited to retrofitting applications, explained Hunt, due to the minimal disruption they cause to building fabric, and recent improvements in LED technology. “LEDs have undergone a rapid technological evolution over the past few years and have become a much more fitting replacement for earlier light sources,” he said. “Older LEDs produced a very blue light, but modern LEDs have advanced to the point where you would be hard-pushed to tell the difference.”

“Efficiency has also continued to improve. If you’re comparing the output of LEDs with traditional commercial technologies such as halogen lamps, then the energy savings are now about 80%. At the same time prices have been tumbling. They’ve fallen 20% for three consecutive years. Lighting products that were quite expensive are now much more affordable.”

Nevertheless, a reduction in energy costs is not the only motivation for installing an energy efficient lighting system, he continued. “What many businesses overlook is the extended lifespan of new lighting technologies. Many modern LEDs can last up to 50,000 hours, compared with 2000 hours for halogen lamps. That’s 25 lamp replacements, plus the expense of calling out a maintenance engineer, which can often cost more than the lamp itself. For large commercial applications the savings can be immense.”Improved return on investment means there is now a strong business case to switch to new technology according to Hunt: “A three-year break-even period a few years back, could now be as short as a year or less. Lighting really is the low-hanging fruit of energy-efficiency.”

Surprisingly however, the largest savings that energy-efficient lighting can offer may in fact come from HR budgets. “There’s been quite a lot of research into the link between lighting and wellbeing,” observed Hunt. “Working under light that is too bright, too dim or the wrong colour has been shown to negatively affect health.”

national

Energy-efficient lighting systems can help to maintain a consistent, high-quality level of illumination, explained Hunt. “The latest systems can dim down lights closest to windows when the sun is shining, for example. They also have the capacity to adjust the colour temperature of light throughout the day to match natural human biorhythms, promoting a more restful night’s sleep.”

This is a point Sara Kassam, head of sustainability at the Chartered Institute of Building Service Engineers, agreed with during an interview with edie Live: “With businesses typically spending 1% of their budgets on energy and 90% on staffing costs, many are realising that the big incentive for installing energy-efficiency technology may not actually be the cost of energy, but the potential it has to make staff more comfortable and productive in the workplace”.

Equally, many business leaders are recognising the potential risks from inaction on energy consumption, she explained. “Shareholders want to see a business being run efficiently. Operating outdated and wasteful technology is not good when you’re looking for wider investment.”

“Energy-efficiency is also important in terms of your business’ energy security,” Kassam cautioned. “Wider political issues are creating uncertainty about what will happen to energy prices in three to five years’ time.”

“Becoming as efficient as possible now cushions your business against that risk,” she advised. “After all, the cheapest unit of electricity is always the one you don’t spend.”

BSRIA is pleased to support edie LIVE.

edie LIVE, formerly Sustainability Live, is the UK’s leading energy, sustainability and resource efficiency exhibition for business end-users.  It connects public and private sector energy and sustainability professionals with the information, suppliers and ideas that can make their business more sustainable.

To explore the latest developments in energy-efficient lighting technology, join edie Live at the NEC Birmingham, 17 -18 May 2016.

%d