UK heat pump market has weathered Covid-19 challenges. Coherent policy support is now needed to unlock its full potential.

by Krystyna Dawson, BSRIA Commercial Director

BSRIA has released its latest global heat pump market reports, including the eagerly awaited report on the status of the UK heat pump market.

Last spring, deep uncertainty set in across the markets as lockdowns in many countries disrupted trading. There was fear within the heat pump industry of a significant slowdown in what had previously shown dynamic market growth.

Indeed, the global heat pump market posted a decrease of 1.5% in 2020. However, performance varied across regions: with 12% market growth year-on-year, Europe has been at the forefront; the UK also saw positive development with heat pump sales increasing by 9.2% in 2020.  

Green Homes Grant

UK heat pump market sales were helped by the RHI and the Green Homes Grant scheme in 2020. The latter has proven to be important for the market, which has seen sustained growth in the refurbishment segment despite the number of installations in new buildings stalling due to the lower level of new home completions.

However, heat pump installation still represents a major challenge in existing homes. The ongoing review of Part L and Part F of building regulations offer hope that refurbishments in homes and buildings will be conceived with low carbon heating in mind, but the review’s outcomes are yet to become a legal requirement.

Moreover, even though there is market potential for a higher number of heat pump installations in existing homes, the government has, so far, been unable to unlock it. The Saturday 27th March announcement of the closing of the Green Home Grant scheme to new applicants by 31st March 2021 has been yet another example of the disappointing approach to deployment of energy efficiency measures and heat pumps.

UK heat pump market: Achieving a net zero carbon economy

Heat pumps are among the technologies the government has identified as key to achieving a net zero carbon economy by 2050. The Prime Minister’s 10 Point Plan for the UK Green Industrial Revolution includes the target to deploy 600,000 heat pumps a year by 2028.

The UK saw around 37,000 heat pumps sold in 2020. The extra £300 million in funding, moved from the soon-to-be defunct Green Homes Grant to local authorities to enable energy efficiency upgrades for lower income households, may bring additional installations. But even if all 30,000 applicable homes were fitted with heat pumps, the numbers are insufficient to sustain hope of reaching the PM’s ambitious target.. There is potential for more heat pump installations in existing homes, and the interest in heat pumps is growing among home and building owners. The heat pump industry is also working at full speed to deliver innovative products that respond to end-user expectations and environmental challenges.

HVAC industry skills gap

However, unless demand from existing homes and buildings is unlocked at full scale, and until real attention is paid to the sufficient availability of a skilled workforce, the heat pump market will struggle to see the acceleration needed to reach the government target and make a difference in the level of carbon emissions from UK homes and buildings.

Coherent policy and financial support are needed to match the readiness to act on both industry and consumer sides. Integration of heat pumps in a home or a commercial building requires a holistic approach where design and affordability should be considered to deliver carbon savings, cost savings and a healthy and comfortable environment.

What makes a good PICV?

by Andrew Pender, National Sales Manager at FloControl Ltd.

Over the last 5 years, PICVs have been widely accepted as the best method of terminal control in variable flow systems due to their energy saving potential.  The surge in popularity has led to an influx of products with varying designs, features and functionality.  This article reviews some of the mechanical PICV design elements and how they can impact on the PICV’s performance in an applicational context.

Where do we start?

To help specifiers and project engineers assess which PICV is best suited for an application, the BSRIA BTS1/2019 standard has been developed to provide a consistent test method for PICV manufacturer’s products to be benchmarked against.

Manufacturers should be able to provide test results in line with this technical standard which covers:

  • measured flow vs nominal flow
  • pressure independency or flow limitation
  • control characteristics, both linear and equal percentage
  • seat leakage test

Repeatability & Accuracy are central to the tests and they are key to good temperature control and realising the full energy saving potential of a PICV installation.

An accurate PICV means the measured results will be equal or very close to the manufacturer’s published nominal flow rate each time it is measured, known as low hysteresis.

Accuracy has a positive impact on a building’s energy consumption.  “Measured over time, a 1% increase in the accuracy of a PICV can result in a reduction of around 0.5% in the building’s overall hydronic energy consumption” (FlowCon International).

Valve accuracy is driven by the design, manufacturing process and material used for the internals of the valve.

  • The design of the PICV should allow for Full Stroke Modulating Control at all flow settings without any stroke limitation.  The flow setting and temperature control components should operate independently.  Some PICV designs use the stroke of the actuator stem to set the flow rate resulting in limited stroke and control.  This can cause issues at low flow rates whereby the PICV effectively becomes on/off irrespective of actuator selection.  
  • The manufacturing process and the component materials also contribute to accuracy. For example, injection-moulded, glass-reinforced composite materials cope better with water conditions that valves can be exposed to.  They also have less material shrinkage than other materials, delivering higher accuracy than valves that use alloy components.

What else should be considered?

The importance of accuracy and repeatability are paramount when selecting a PICV however there are other factors that should be considered:

  • Wide flow rate range – including low flow rates for heating applications, ideally covered by a small number of valves.
  • Setting the flow rate – setting the PICV can influence the accuracy. There are various scales used including set points related to flow rates and percentages. PICVs with very detailed scales with small increments between set points are more difficult to set accurately, leading to higher tolerances than the BSRIA standard recommended + 10%.
  • Wide ΔP Range – low start up pressure. To operate satisfactorily, the PICV requires a minimum pressure differential to overcome the initial spring resistance within the PICV, enabling the spring to move and take control. Care should be taken to ensure the minimum pressure differential is as low as possible to maximise the energy saving potential of the system.  The maximum DP should also be considered to ensure the PICV operates effectively under part load conditions.
  • Dirt tolerance – the Valve Control Opening Area [A] on all PICVs, irrespective of the manufacturer, is identical for each flow rate. The shape of the Control Area can be different depending on the valve design. A Rectangular flow aperture is more tolerant than an Annular flow aperture. Debris will pass through the rectangular aperture more easily.
  • Removable inserts – deliver the greatest flexibility and serviceability.  Products can be easily serviced in line without disruption. This is especially of value when water quality is poor or when flow requirements change due to changes in space usage.  Inserts can also be removed during flushing.  Valve bodies can be installed with blank caps eliminating the risk of damaging or contaminating the PICV element, whilst having a full-bore flushing capacity.
  • Installation – PICVs in general have no installation restrictions however in line with BSRIA BG29/20, it is recommended that PICVs should be installed in the return branch as small bore PICVs will have a high resistance which will hinder the flushing velocity during the forward flushing of terminal units.

Making the right choice

There are many aspects for specifiers and project engineers to consider when selecting the right PICV for an application.  The BTS1/2019 standard provides an excellent benchmark, but the individual designs also need to be carefully considered.  A correctly selected PICV will ultimately lead to a more comfortable indoor climate with better control of the space heating and cooling as well as potentially reducing the pump energy consumption in a building by up to 35%.

This post was authored by Andrew Pender, National Sales Manager at FloControl Ltd. All views expressed are those of the author. If you belong to a BSRIA Member company and wish to contribute to the BSRIA Blog, please contact marketing@bsria.co.uk

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

Smart Homes – The View from Berlin (And some answers to Life’s Enigmas)

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

For decades, mankind has agonised over such worrying conundrums as whether the fridge light goes out when the door is closed, or whether I need to drive 20 miles home to check that I really did turn the iron off. (I plead guilty to the latter).

If the 2016 IFA Messe in Berlin, which finished on 7th September, is anything to go by, then these dilemmas will soon be a thing of the past. Not only will I be able to log into my iron from the other side of the world, but a web cam will allow me to check the contents of my fridge, and potentially even the status of the food.

For a long time the idea of smart appliances has seemed almost whimsical, the domain of the geek or the obsessive with surplus money on their hands. The more serious message from IFA is firstly that most of the major quality appliance manufacturers, in both Europe and Asia Pacific are starting to make serious investments in smart appliances. Of course this investment does not prove that the demand will grow to match it. This will depend just as much on a second clear trend, namely that smart appliances are starting to interact with wider home management systems in a way that can potentially change the whole way that households operate, and revolutionise day to day domestic life.

To take a simple example; in the UK there is a lot of talk about shifting tasks that are not time-critical to off-peak times when energy is cheaper. But this mostly hangs upon smart meters. In Germany there has been a lot of resistance to smart meters (especially on data protection grounds), but the country is a world leader in domestically generated solar power. Several of the leading ‘white goods’ manufacturers, including Siemens, Miele and Bosch have partnered with SMA, the country’s leading supplier of residential solar power and storage systems. Your wash can now be kicked off automatically when there is enough solar power to drive it thus saving both  money and CO2 emissions.

From intelligent fridges to robots to keep an eye on grandma; the smart future is emerging

From intelligent fridges to robots to keep an eye on grandma; the smart future is emerging

Specialised smart systems are also increasingly being integrated into wider smart home systems, with a combination of open standards and a “best of breed” approach. This allows you not just to invest in one of the market-leading smart lighting systems, but also, for example to use it to changing the light settings to suggest that the building is occupied.  Home security is a huge theme in Germany, where burglary rates have actually been rising over the past couple of years. Another smart home system can use top of the range entertainment sound systems to mimic sounds like hoovering – with the added bonus that you can now also annoy the neighbours even when you are on holiday.

One flip-side of this is a degree of potential complexity, and many vendors are aware that systems that are complex to install, program and to manage are incompatible with a true mass market. Accordingly many now offer voice-command systems most commonly using Apple Siri or Amazon Alexa. Some suppliers also offer a degree of “machine learning” based on the behaviour both of typical users and of the actual householder.

Another key trend that BSRIA has also picked up over recent years is that much of the higher-end smart home market overlaps with the light-commercial market. A luxury home and a small office may have many similar requirements in terms of lighting security and energy requirements, and the owners may be willing to make the investment. KNX has a huge presence in this market.

On the other hand, the mass market will only be conquered by systems that are relatively low cost, and simple to install, either by the owners themselves or by an ordinary non specialist electrician. One supplier, Datastrom, makes use of mains electricity wiring to connect and control devices, so can be installed by an electrician. Others deploy low- power devices which can be battery powered and can communicate wirelessly using a low energy protocol such as Z-wave. This also makes the smart home relatively portable, which is an attraction in a country like Germany  where far more people rent their homes than do in the UK or the USA.

Smart technology - light in the tunnel, not just at the end of it.

Smart technology – light in the tunnel, not just at the end of it.

I came away from IFA with a confirmation that a dynamic smart home market is taking shape as part of the massive expansion in smart technology and the Internet of Things. There remain huge question-marks. While there is almost universal awareness that cybersecurity is an issue, and much is being invested in it, it is not yet clear that there is an effective way of keeping all devices secure at all times. In fact this concern could drive the move towards complete smart homes, as it is probably easier to monitor a network of IoT devices for ‘suspicious behaviour’ than to try to protect and update each one individually on a continual basis.

BSRIA will be shortly be publishing a series of studies on each of the Smart Homes and Light Commercial markets in Germany, France, UK, the Netherlands  and on North America, which will explore all this, and much more.

For more information please feel free to contact me, Henry.Lawson@bsria.co.uk – +44 (0)1344 465 590

Lighting: the low hanging fruit of energy efficiency

Peter Hunt, COO, the Lighting Industry Association

Peter Hunt, COO, the Lighting Industry Association

Rising efficiency standards in LED technology and falling purchase prices mean that businesses can now expect a shorter pay-back on their investment according to Peter Hunt, chief operating officer at the Lighting Industry Association.  We caught up with him ahead of the launch of the lighting hub at edie Live 2016 which will showcase the latest developments in energy-efficient technology.

Energy-efficient lighting products are particularly well suited to retrofitting applications, explained Hunt, due to the minimal disruption they cause to building fabric, and recent improvements in LED technology. “LEDs have undergone a rapid technological evolution over the past few years and have become a much more fitting replacement for earlier light sources,” he said. “Older LEDs produced a very blue light, but modern LEDs have advanced to the point where you would be hard-pushed to tell the difference.”

“Efficiency has also continued to improve. If you’re comparing the output of LEDs with traditional commercial technologies such as halogen lamps, then the energy savings are now about 80%. At the same time prices have been tumbling. They’ve fallen 20% for three consecutive years. Lighting products that were quite expensive are now much more affordable.”

Nevertheless, a reduction in energy costs is not the only motivation for installing an energy efficient lighting system, he continued. “What many businesses overlook is the extended lifespan of new lighting technologies. Many modern LEDs can last up to 50,000 hours, compared with 2000 hours for halogen lamps. That’s 25 lamp replacements, plus the expense of calling out a maintenance engineer, which can often cost more than the lamp itself. For large commercial applications the savings can be immense.”Improved return on investment means there is now a strong business case to switch to new technology according to Hunt: “A three-year break-even period a few years back, could now be as short as a year or less. Lighting really is the low-hanging fruit of energy-efficiency.”

Surprisingly however, the largest savings that energy-efficient lighting can offer may in fact come from HR budgets. “There’s been quite a lot of research into the link between lighting and wellbeing,” observed Hunt. “Working under light that is too bright, too dim or the wrong colour has been shown to negatively affect health.”

national

Energy-efficient lighting systems can help to maintain a consistent, high-quality level of illumination, explained Hunt. “The latest systems can dim down lights closest to windows when the sun is shining, for example. They also have the capacity to adjust the colour temperature of light throughout the day to match natural human biorhythms, promoting a more restful night’s sleep.”

This is a point Sara Kassam, head of sustainability at the Chartered Institute of Building Service Engineers, agreed with during an interview with edie Live: “With businesses typically spending 1% of their budgets on energy and 90% on staffing costs, many are realising that the big incentive for installing energy-efficiency technology may not actually be the cost of energy, but the potential it has to make staff more comfortable and productive in the workplace”.

Equally, many business leaders are recognising the potential risks from inaction on energy consumption, she explained. “Shareholders want to see a business being run efficiently. Operating outdated and wasteful technology is not good when you’re looking for wider investment.”

“Energy-efficiency is also important in terms of your business’ energy security,” Kassam cautioned. “Wider political issues are creating uncertainty about what will happen to energy prices in three to five years’ time.”

“Becoming as efficient as possible now cushions your business against that risk,” she advised. “After all, the cheapest unit of electricity is always the one you don’t spend.”

BSRIA is pleased to support edie LIVE.

edie LIVE, formerly Sustainability Live, is the UK’s leading energy, sustainability and resource efficiency exhibition for business end-users.  It connects public and private sector energy and sustainability professionals with the information, suppliers and ideas that can make their business more sustainable.

To explore the latest developments in energy-efficient lighting technology, join edie Live at the NEC Birmingham, 17 -18 May 2016.

Have you been blackmailed by your Dishwasher? Who Owns the Smart Future?

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Having recently updated BSRIA’s key market studies on Building Automation Controls (BACS), Building Energy Management (BEMS) and Smart Evolution – towards the Internet of Everything, I was struck by a world in a state of flux with  implications for the built environment and technology in general that could be as profound as they are unpredictable.

The structure and make up of our buildings and cities have always been intensely political. The most visible of all human creations, they speak volumes about our abilities, our status and our values and our aspirations. I felt this last month  when viewing the ruins of Ephesus – once the second city of the Roman Empire –  as much as when  I am visiting London or Chicago.

At least since the turn of the millennium there has been a tacit assumption that while technology is the great enabler, much of the change in the way our buildings and cities are designed and organised will be driven by social concerns, typically expressed through politics. In particular, the perception that the threat of climate change requires far reaching action has led to a sustained series of targets, guidelines and regulations to increase both energy efficiency and the use of renewable energy, which naturally impacts on the built environment as one of the biggest consumers of energy.

Is this movement losing momentum? The financial crisis and recession affecting much of Europe, North America and some other parts of the developing world has proved to be the most prolonged since the 1930s. Even countries which appeared to escape the worst impact have since experienced either recession or a dramatic slowdown, including Australia, Canada and of course China.

With falling or stagnating production and rising government debt levels in so many countries, it is no surprise that finances and basic economics have come to the fore. Violent conflicts, especially in the Middle East, Africa  and Eastern Europe, but overflowing into other parts of the world, and in turn fuelling mass movements of refugees and economic migration are also seizing attention in developed countries as well.

All of this has sometimes appeared to leave the “green agenda” somewhat on the back foot. Even in countries like Germany, Austria, Australia and New Zealand, where Green parties have attracted mass support and had a major influence on government, they have seemed to become more marginalised. Britain’s recent elections resulted in a new majority government which has very quickly moved to relax requirements on the energy efficiency of new buildings, and also to phase out subsidies for wind power.

While there is argument as to how far this is simply a question of means, and how much it represents a shift in priorities, there is little doubt that measures to improve energy efficiency or to promote use of smart technology face an uphill path if they cannot also provide a quick pay-back.

Where governments get involved in technology, it tends to be for old fashioned economic reasons.  When  mega-corporations  like Microsoft, Apple, Google and Amazon have been in the spotlight it has mainly been because of accusations of anti-competitive practices or because of their tax policies. Rather less thought has been given to the ways in which companies like these could change the basic structure of society, the balance of power, and the whole environment.

Increasingly these global brands interact directly with a global audience, influencing their behaviour, and in turn being influenced by them. It is no accident that Microsoft, Apple, Google and Amazon, having established themselves as consumer brands, are now all active in the area of smart buildings, ranging from the smart home to, in Microsoft’s case, providing the data crunching to manage and optimise whole campuses of buildings.

Increasingly we can link these to wearable devices and to creators of virtual realities which could radically change our day to day activities and environment. Even the basic blocks  from which buildings are made can have ‘smart’ properties, from ‘self-healing’ bricks to glass that responds dynamically to different levels of light.

threatsWith artificial intelligence already surpassing human intelligence in certain well defined areas – such as chess playing – questions are raised about how far the technology goes, who owns it, and how much power they will have. Even our homes and offices can study, learn and predict our habits and our preferences, in ways that can certainly be useful, but also potentially disturbing.

For over a hundred years there have been fears about the prospect of vital areas of technology  being dominated by a single concern or perhaps a cabal of companies. So far, in practice, it has been innovation itself  that has come to the rescue. Even the most nimble footed technology giants have been caught off-guard by new waves of technology, from IBM, to Microsoft to Nokia. In the case of building technologies the requirements are particularly diverse, and  it is quite unusual to find a country where a single supplier accounts for more than 25%-30% of the market.

Nonetheless as we look to a future where corporations and, by implication, governments have access to information about almost every aspect of where we are, what we are doing, how we feel and what we want and fear.

While you can probably rest assured that your dishwasher probably doesn’t have a motivation to blackmail you (why were those extra glasses washed out at 3 o’clock last Thursday morning?) you can be less assured that it won’t soon have the evidence to do so.

More information about the latest editions of BSRIA’s market studies on Building Automation, Building Energy Management, and Smart Evolution is available here.

Renewable Energy – The Vital Missing Link

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

For years, renewable energy, especially solar power and wind, has offered the tantalising prospect of almost zero carbon energy; tantalising because, even as costs fall, solar and wind are inherently unreliable, especially in temperate climates such as those that we ‘enjoy ‘in regions like Western Europe, and much of North America not to mention most of the developed world.

While a lot of progress has been made in demand response, which manages the energy that we need to match that which is available at any given time, we need a cheap, safe and efficient way of storing electrical power. Up until now, storage of electrical power in particular has been expensive and inefficient, and sometimes a bit scary.

The electrical vehicle market of course already faces this problem in spades. Electric cars are never likely to become main-stream so long as they need to go through a lengthy recharge process every 200 miles or so. It is therefore no surprise that much of the running is being made by manufacturers of vehicle batteries.

Tesla’s announcement that it is moving into the home energy storage market could represent a significant step. Being able to store electrical power not only makes local wind and solar power generation more practicable, it could also be invaluable in the many areas of the world where the grid is unreliable or virtually non-existent.

The biggest barrier, at least initially,  is likely to be the price tag. The 7kW battery which could, for example power a laptop for two days, or run one full cycle of a washing machine, or boil 10 kettles, will cost $3,000 to buy: That’s a very pricey home laundry service, and a frighteningly expensive cup of coffee, especially if you only need to use it occasionally.  The 10kW version represents slightly better value.

At this stage this is surely going to appeal only to wealthier individuals living away from a reliable grid, or those willing to pay to make a green gesture.  However, as with other technology initially aimed at the ‘smart home’ we may well find that much of the demand is actually from businesses. If you are running a business, even a small one, then any loss of service can do you immense damage. If an investment of a few thousand pounds or dollars can help guarantee that you will keep running, then it may well seem like an attractive return on investment.”

A further significant sign is Tesla’s announcement of an alliance with the international Energy Intelligence software supplier EnerNOC, which already has a presence in the USA, Canada, Germany, the UK, Switzerland, Ireland, Brazil, Australia and New Zealand.

Ultimately, success for energy storage in buildings, as in vehicles is likely to hinge on the two Cs: cost and capacity. It is a familiar catch 22 situation with most new and emerging technologies, where the market is waiting for the price to fall, but, other things being equal, production costs will only fall once you have achieved  real economies of scale.  The other factors that could influence the market are regulation, requiring builders or building owners to make provision for storage, or someone willing to take a loss leading initiative.

Safety concerns will also need to be allayed, given problems that have occurred with various types of battery technology, whether in laptops or vehicles. Storing a lot of energy in a very small space, inside the home is always going to raise concerns. And while batteries may offer the most promising option at the moment, other forms of energy storage might prove more effective in the end.

Still, the paradox is that sometimes problems get solved precisely because they are so big. The whole direction that the world is moving in, the growing realisation that we need to slash CO2 emissions,  demands cheap, efficient, safe energy storage. It seems likely that companies like Tesla, along with the other major energy companies involved in energy storage  will continue to concentrate their fire power on this until a viable solution emerges. And for the first few who get this right, or even approximately right, the potential returns are huge.

For then we really will have found the missing link.

Using Robotic Total Stations to drive down the cost of construction

Since the days of the Latham report in 1994 there has been a desire to cut the cost of construction, mainly by finding more efficient ways of doing things. Of course, there will always be people who stick rigidly to the principle that ‘the old ways are the best’, but there are many more who are more open-minded – not least in terms of making use of new technologies.

Having said that, there is one particular technology that has not yet been embraced in the UK, despite the significant financial and time benefits that have been shown time and again in the USA and other countries.

I am referring to the use of Robotic Total Stations (RTSs) for laying out building services – as an alternative to the traditional ‘tape measure, spirit level and theodolite’ approach.

This blog considers the limitations of traditional methods and explains how RTS technology can help to overcome them. It also explores some of the reasons that this technology has not yet been widely adopted in the UK.

Are the old ways the best?

Traditionally, the layout of building services on site has involved a team working from the building drawings, using a tape measure, spirit level and theodolite to identify attachment points for pipework, cable trays etc.

Unfortunately, this system doesn’t work particularly well with complex buildings, buildings with curved walls, buildings with prefabricated materials, BIM or non-orthogonal spaces. In fact there is a huge margin for error, resulting from the following challenges:

  • Ensuring the reference point is right
  • Making sure the tape measure doesn’t move
  • Making sure the string doesn’t move on arcs
  • Ensuring the theodolite is level
  • Making sure the degree in which you are measuring is exact

Every small mistake can lead to potentially serious consequences. For example, being a few degrees out on an angle can mean that pre-fabricated systems don’t fit when the time comes to install them.

Similarly, incorrect layout can result in clashes with other building elements or services, thereby disrupting the construction schedule, generating remedial works and wasting materials, time and money.

Even when everything goes smoothly, the traditional approach is laborious and time-consuming and any delays can affect the work of other teams.

Plus, when changes need to be made, methods of recording reasons (obstruction etc.) and evidence (photographs etc.) are recorded additionally to any drawings they are working from.

These reasons are sometimes reported to the design team (if there is one) to amend the drawings or model; at other times, these records are filed separately for the purposes of finger-pointing at a later date.

Either way, it takes a long time for this information to be reflected in the designs, if at all, which means other contractors or labour forces won’t see the changes until they’re updated.  Working from paper also has the potential for loss or damage.

Furthermore, these issues are going to become more serious with the wider use of Building Information Modelling.

An alternative approach

Robotic Total Stations (RTS) allow layout to be completed by only one person, rather than the classic layout team.

To begin construction layout, a tablet with software controls the RTS and is loaded with a 2D drawing or 3D building model. Site survey points from the job site are identified in the model and are used to locate the RTS on the project site and in the model.

Once the RTS is located, the person operating the RTS can view the model on the tablet computer and select the points to be marked.  Once selected, the RTS will tell the operator their precise distance from the point (if using a stake) and then guide the user to the point with directions indicating forward/backward or left/right movement.  The operator then stakes the mark and moves to the next one.

A more advanced RTS feature is Visual Layout  which marks the layout point with a laser (removing the need for the stake); the operator then only has to follow the laser to each point and mark the location.

Basically, the RTS does all the work while the operator follows its laser, marking each point to within a distance of millimetres from the 2D/3D model point.

This can be used for the accurate positioning of multiple trades at the same time, ensuring no delays on site.

So what are the benefits?

Improved efficiency.

RTSs use the same 2D drawings or 3D building models as other trades involved in the project, so collaboration is simpler and quicker.

Enhanced accuracy.

Layout coordinates can be accessed directly from the building model and changes to layout positions can be recorded at the time of layout and documented with reasons and photographs.

Fewer mistakes.

The RTS works directly from the building model. There are no manual measuring processes involved. Points to be marked are extremely accurate and their purpose is referenced to the operator via their tablet device.

Reduced paperwork.

Using the RTS on a job is a paperless process, meaning there is no risk of losing documents or spilling coffee on them.

Reduced labour costs.

The RTS only needs one person to operate it and that one person is also capable of increasing layout productivity by up to five times.

Improved quality control.

RTSs can be used as a sophisticated tool in a QA/QC process, both pre- and post-installation.

BIM-to-Field

As we move to more sophisticated BIM processes – such as 4D & 5D BIM that includes building production models and which consider the constraints of a construction site (equipment capacity, working methods etc.), model based estimating and more – a live link to the field is needed.

This link, in part, can be provided with the use of an RTS, allowing responsible parties to track works as they are completed and referenced against the original model, applying changes where necessary and allowing the tracking of works ready for access by the next stage in the construction process.

So why aren’t we using them?

Companies across the US have used RTSs on construction sites for many years now. They’ve been highly popular with MEP contractors and revolutionised layout processes and BIM progression; so why don’t we use them?

A lot of it simply comes down to misconceptions about the technology and its uses.

Return on investment.

Implementing RTS technology requires capital investment and many companies feel that because they don’t have dedicated layout teams they won’t see a good return on their investment.

However, the relative simplicity of RTS technology means that any member of the MEP team can carry out accurate layouts, so the contractor can make better use of the workforce.

Also, RTS eliminates manual errors so that the most highly skilled and best trained individuals can be allocated to the more complex tasks, while lower skilled operatives do the laying out.

In addition there are considerable time savings that could ultimately reduce the number of operatives required on the project, thus reducing labour costs.

You can calculate your own ROI here

The savings cited for RTS do not have any real impact on the bottom line.

This is simply not true. Savings from the use of an RTS can be seen in:

  • Reduced remedial works due to increase in QC/QA documentation and recording – an immediate reduction in cost.
  • Improved efficiency whilst on site – reduction in labour cost.
  • Fewer errors in MEP element locations (another remedial work saving) – an immediate reduction in cost.
  • Reduced resource required to complete works – an immediate reduction in cost.

MEP designs evolve during installation so that the drawings do not represent the actual situation.

Perhaps this is true today, but if you are working this way now, you won’t be for long. For medium and large projects MEP data and detailed design will be as essential as structural design as the industry assimilates the BIM process.

UK BIM deadlines are looming now and businesses looking to grow, or large businesses looking to remain profitable, will need to ensure they can work in these parameters – and soon.

Clashes between services do not occur when the same contractor is doing all of the MEP work.

On small projects it is often possible to ‘work around’ any clashes between services. However, on larger projects it is not enough to ask for one element to be placed over/below/around another, as this may then run into a second clash with a third element.

This second work around would involve a wider rectification, which may infringe on another element, and so on until a solution cannot be made.  Eventually, it may occur that an MEP element then interferes with the installation of another contractor’s or team’s work.

Also, when ‘working around’ an issue, we create problems when considering building maintenance post-construction, as MEP elements will deviate from their logical course.

UK construction techniques do not lend themselves to using an RTS.

While it’s true there are some differences between UK and US construction methods, there are many more areas where RTS can deliver the same benefits to UK contractors as it is already doing for US contractors.

Conclusion

While any investment in new technology clearly requires careful consideration, I hope it is now clear for the reasons stated above that RTS is certainly worthy of that consideration. The potential benefits to MEP contractors are enormous, so surely it’s worth taking the time to keep an open mind and take a closer look.

Follow this link to see a demonstration video or, if you’d like to see this technology in action, book onto a Trimble road show event to compare this with a traditional approach.

Author Profile
This blog was written by Chris Slinn, MEP Business Development at  Amtech, a Trimble company, a manufacturer of specialist software for the building services industry.

Why the industry needs to be uncomfortable with current ways of working

This blog was written by Richard Ogden, Chairman of Buildoffsite

This blog was written by Richard Ogden, Chairman of BuildOffsite

I am delighted to have this opportunity to contribute a blog – particularly at a time when a hugely influential industry like BSRIA is exploring the need for the industry to change its processes.

I have worked in the construction industry for more than 40 years – as client, contractor and property manager. In all that time there has been an almost constant call from voices drawn from right across the industry, from Government and from the media for the industry at large to change its processes and ways of working. To do things differently – to work collaboratively – to partner – to adopt innovative processes – to invest in and adopt new technologies and project management practices and so on. The reason for this clamour is always the same – the need to improve performance and productivity, the need to be less wasteful and more sustainable, to improve the image of the industry, to deliver better value assets, and to make the industry a better and safer place in which to work.

All good and well intentioned stuff but it does seem to be a peculiar feature of the construction industry. I don’t for example hear anything similar coming out of the automotive or consumer products sectors. Industries where investing in change/innovation is constantly being driven by the unforgiving hard edge of competition. OK- I hear (but do not accept) the mantra that construction is in some way different from other industries and frankly I recognise that there is still a whole lot of life left in this view of the industry. I am certainly not going to beat myself up in challenging this position when there is so much more constructive work to be done.

The case for change within construction often comes wrapped up within the covers of a report from an industry or Government appointed committee together with recommendations for action plus of course a set of targets. Inevitably before long yet another report will come delivered by yet another committee having chewed over an almost identical bone which will have come up with broadly similar proposals and another set of targets. All seamless and without any sense of continuity of message or indeed continuity of action.

Don’t get me wrong I am not against this approach as a mechanism to stimulate discussion and debate and indeed I was a member of the Movement for Innovation. However, it’s just that I don’t see much in the way of connection between broad based calls for change and the practical decision taking that goes on day in day out within individual construction businesses looking to win work and improve profitability and competitiveness. Close coupled to this is the reality that the status quo is for many a very comfortable place in which to operate. Unless there is a pressing need for a company to do things differently the chances are that sticking to the knitting will be an attractive option. Why break step if your competitors are operating in much the same way and if business is good.

In my experience it is only when individuals decide that they are uncomfortable with or no longer willing to simply go along with the way things are that meaningful change is likely to happen. If enough individual businesses decide to do things differently then there is the prospect that a sizeable part of the industry will change how it works – not because a report has made recommendations but because they are convinced of the need. Encouraging more decision takers within the industry to be uncomfortable and then encouraging the uncomfortable to take decisive action is how substantive change can happen.

Sometimes change becomes necessary if a business is to survive and prosper. When I worked for a client the cost of construction delivered traditionally became more and more expensive until the point was reached where the business could no longer afford to invest in new construction projects because the cost was not justified by the revenue that the investment would deliver. Think about that for a minute we were a serial client wanting to invest in new construction to help grow our business and to create jobs but the harsh reality was that we had been priced out of the UK market. I suspect that it will not be long before this phenomenon reappears in some sectors of the UK market.

Our decision was quick in coming – if the traditional industry was not able or willing to provide us with the built assets at a price we could afford and to deliver within the timescale in which we needed the assets then we would change our construction model and our supply chains and take on board the challenge of stripping out a significant amount of the waste that we knew to exist within the traditional industry in order to deliver the projects at a price that worked for us and within a timeframe that was acceptable to us. Working in close collaboration with our project partners we demonstrated that it was possible to simplify processes, strip out waste, adopt standardisation as much as possible and most importantly take that essential step of maximising the use of factory made offsite solutions to minimise the need for construction work to be carried out on site. Constructing on site from a set of commodity materials and products is inevitably going to be uncertain and potentially challenging involving low levels of site based productivity, indifferent quality and uncertainty of build programme.

The results we achieved were powerfully impressive in terms of the cash savings made, the additional value we gained and the much faster build times that we achieved. All this – including protecting the margins of our suppliers – was achieved by minimising all forms of waste. That was just fine as far as I was concerned because as a client given the choice I would not want to pay for waste and inefficient processes. I would want to pay for right first time quality, build programmes that are realistic and cost in use that is meaningful.

The learning acquired as a result of this forced change stood my company in good stead and became our standard construction practice. Our approach was also taken up by many other leading clients.

We were not talking about rocket science. The steps we followed involved a relatively simple approach including: giving clear leadership; being sure about what we wanted to achieve; listening to our suppliers and encouraging their advice; being collectively prepared to rethink every aspect of construction – absolutely no sacred cows; not being prepared to accept the message that this or that couldn’t be done – it usually can; be open minded; recognising that there will always be scope to do things even better next time around.

This approach and in particular a recognition that other than for site specific elements it is almost always better to assemble building and civil engineering structures on site is fundamental to the work programme that Buildoffsite has been advocating for more than 10 years. Together with our Membership we will continue to make the case for the increased use of offsite solutions based on sharing information on the innovative projects that our Members have delivered, working together to develop new innovative solutions, promoting new technologies and encouraging the take up of information modelling and the application of lean principles to identify opportunities for introducing more efficient processes.

I am delighted that our Membership continues to grow bringing together leading clients, suppliers, investors, skills and research organisations and so on. The common denominator is that our Membership and those organisations we work with to partner knowledge transfer are all committed to do things better – at a practical level to make change happen and to support continuous improvement.

Front cover imageThe case for offsite solutions will be proven to the satisfaction of clients and suppliers by the tangible project benefits delivered by projects that incorporate offsite methods. This applies just as much to the delivery of building services as it does to all other construction elements. However, there will be no free lunch. An approach based on the use of offsite solutions will need to deserve to be commercially successful. If offsite solutions fail to be competitive with traditional methods on whatever basis the customer deems appropriate then they will not be adopted.  That is precisely how markets should operate. However, I hope that in comparing the performance of offsite solutions with traditional solutions the assessment will include all relevant factors that impact on value including time, cost, quality and cost in use. For example it can still be the case that the precise cost of a potential offsite solution will be compared with the theoretical and highly uncertain predicted cost of traditional construction. As construction inflation increases this simplistic method of assessing project value is likely to become increasingly unreliable. We are working closely with the industry’s professional institutions to improve the understanding of offsite construction and to support the development of new skills.

I have no doubt that the case for offsite solutions will continue to grow and the market will expand rapidly across all sectors. I also have no doubt that we have only just started to scratch the surface in terms of our understanding of what can be achieved in reducing cost, improving client value and improving the performance of the industry. Remaining open minded and being committed to challenge the status quo will continue to drive innovation and to effect the changes that we are called on to support.

If I can pass on one final suggestion it would be to encourage everyone in the industry to be uncomfortable with current ways of working. If we could achieve this we would be well positioned to move on to effecting change.

If anyone wants to learn more about Buildoffsite check out our web site www.buildoffsite.com

Infrared technology protecting against Ebola

This blog was written by Alan Gilbert, General Manager of BSRIA Instrument Solutions

This blog was written by Alan Gilbert, General Manager of BSRIA Instrument Solutions

As Heathrow and many other international airports start to employ screening procedures in the fight against the spread of Ebola, BSRIA Instrument Solutions General Manager Alan Gilbert discusses how the technology will be used.

Q. What technology will be used at Heathrow?

Heathrow will be using IR (Infrared) spot type thermometers to take skin temperature of people that have been identified as coming from areas affected by the current Ebola outbreak. These thermometers can detect skin temperature at a distance, which in this application means there is no direct contact between passengers being screened and the instrument being used.

Q. A number of international airports are starting to use thermal imaging camera to screen for the Ebola virus, why is that?

Although there is a low risk of catching Ebola by sharing a plane with an infected person Ebola is a particularly virulent virus and nations and airlines are acting responsibly by identifying any infected travellers prior to boarding the plane or entry into a country. The use of thermal imaging cameras is a cost effective unobtrusive means of detection to screening a large volume of travellers.

Q. Why use thermal imaging cameras?

Thermal Imaging cameras are used to identify and measure the amount of heat that any object produces and emits, this includes people. The thermal imaging equipment used is able to identify the temperature of a large number people simultaneously and with processing software they can identify quick any individuals with potentially a higher body temperature.

Q. What will the thermal image show?

It depends on the technology which is being, but in general terms the thermal image will show that an individual has a higher than normal body temperature and further testing and questioning is needed.

Q. Has thermal imaging been used before?

Yes, in the past when we had a SARS outbreak some high tech thermal imaging cameras were used to identify individuals with increased Thermal image crowdtemperature through an individual’s sinus tracts. Cameras were used around the world in this application as a tool to reduce the spread of the disease and to quick spot individuals who may be at risk from infection.

Q. Which technology is better for screening?

Both thermal imaging cameras and IR thermometers are equally appropriate for use in screening as both technologies will identify passengers who are emitting a higher temperature, this will then allow the authorities to identify passengers who need to undergo further medical examinations.

Q. What happens if somebody is stopped as a result of the screening?

There will be a medical team at the airport who will quarantine the individual and undertake a further medical examination, this will involve undertaking a blood test to allow a proper diagnosis to be made.

Q. If you get stopped as a result of the screening does it mean you are suffering from Ebola?

Not necessarily, you could have no more than a common cold or an upset stomach, conversely somebody with Ebola may be in the incubation period of the disease and as a result not show up as being infected as a result of the screening, due to the numbers of people travelling it would not be practicable to undertake full medical examinations on all travellers, so using thermal imaging cameras is considered to be the best method for undertaking mass screening on travellers.

 

 

 

%d