Always look on the bright side

This post is by Casey Wells, Trend’s UK Marketing Manager

I’m Casey Wells, UK Marketing at Trend, and in this blog talk about how integrating lighting along with heating, ventilation and air conditioning (HVAC) into a BEMS can bring together the largest consumers of electrical energy in a building and why such integration makes sense.

According to recent industry studies, lighting accounts for 19-23 per cent of the energy used in a building, with 40-52 per cent normally being used for HVAC. This means that companies have the potential to control up to 75 per cent of their energy usage through a BEMS.

Although controlling HVAC installations by BEMS is well known, many people are still unaware of the benefits of integrating lighting control. Devices like the Trend 963 Supervisor use dashboards that visualise lighting and HVAC points on a common head-end and detail the occupancy status of different zones, as well as the current luminaire status in each area.

The normal pattern of a working week can also be catered for automatically and lighting can, for example, be scheduled to turn on and off at certain times. Of course, life doesn’t always operate to a fixed schedule, so a BEMS can offer timed schedule over-rides to cater for changes such as a late networking event.

An additional benefit for integrating lighting with a BEMS is increased levels of safety and reliability. For example, emergency lighting can be continuously monitored by the BEMS. If an irregularity does occur, the BEMS will be configured to email the facilities manager or other designated person, and provide a complete report.

Building and facilities managers have much to gain from using a BEMS that integrates lighting control. With such a system, they can take advantage of real time energy monitoring and proactively save energy.

For further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com.

Building Controls: Throwing a BRIC in the Works

Henry BlogThe BRIC countries; Brazil, Russia, India and China feature prominently in the news on an almost daily basis, for all sorts of reasons. While there have been concerns over a slowdown in growth, China, India and Brazil have all continued to grow through the recession at substantially faster rates than most of the developed world, and whilst the somewhat reduced growth rates may cause alarm in China and India, they would be cause for wild celebration in, say, much of Europe.

China, Brazil, Russia  and India all now rank in the World’s top 10 economies, and China is already second only to the USA, and is poised  to overtake it sometime in the next few years.

This economic development has naturally been associated with a lot of building development, including demand for such systems as HVAC and Building Automation. Nonetheless, in the BRICS countries the Building Controls markets have tended to lag behind their economic development.

Hence, according to BSRIA research, China’s Building Automating market was the world’s 5th largest in 2012, while Russia ranked 11th, India 16th and Brazil 18th.

What is more, the same research shows that the Chinese, Indian and Brazilian markets were dominated by the “Big 4” global suppliers: Siemens, Johnson Controls, Honeywell and Schneider Electric, even though the individual company shares varied reflecting local market conditions.

One thing that the history of the past 150 years has taught us is that as technologies mature and economies develop, industries tend to migrate to areas which offer the combination of lower costs and growing markets which China, India and Brazil are all in a position to do. This has been seen with the massive movement of manufacturing industry to China and of IT related industries and services to India. This in turn has created some new locally owned corporations with major industrial and financial clout, in a position to compete and invest on a global basis.

The latest update to BSRIA’s global study Challenges and Opportunities in the BACS Market , looks at a number of key trends, including the potential for new challengers to emerge in China, India and Brazil.

Unsurprisingly, the process appears to be most advanced in China. Spurred on by the wave of new construction, suppliers such as Techcon, SUPCON, Beston and RUNPAQ have started to make a real impact covering most of the main vertical markets, and including some high profile projects.

In India, where the overall market is significantly smaller, only Larsen and Toubrou, a major Indian-owned global corporation, stands out. There are however a host of Indian companies providing implementation and integration services.

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

In Brazil a major domestic supplier has yet to emerge, though as in India there are a range of local companies offering related services.

In Russia, local Champions such as Regin and Polar Bear have gained a significant national market share, but have yet to have much impact elsewhere.

Past experience in other industries suggest that these countries may well provide favourable conditions for local champions to emerge and that, as their national BACS markets grow and mature, so this could even provide a springboard to offer products and services on a regional or even a global basis. This is definitely an area that everyone with an interest in Building automation, be it as a supplier, customer or service provider, should continue to watch going forward.

Other subjects that we focus on in the latest update include Technical Infrastructure Support Providers, developments in cybersecurity for buildings, and new alliances and mergers.

To find out more about Challenges and Opportunities in the BACS Market please contact Steve Turner – Steve.Turner@bsria.co.uk

Refrigeration Part 1 – Choosing the right refrigerant

Salim Deramchi, Senior Building Services Engineer at BSRIA

Salim Deramchi, Senior Building Services Engineer at BSRIA

Refrigerants are a key component for air conditioning and refrigeration. Since the 19th century there have been many refrigerants developed and used but none of them has as yet become the industry standard.

As an industry we should not consider reducing F-Gas emissions as just complying with legislation to meet government set targets, but reducing them will also have a positive effect on operating costs.  We can make cost savings through efficient operation and we can also help enhance market reputation by being more environmentally friendly.

To have a good understanding of this we need to look at:

  • Available refrigerant types
  • Our selection criteria
  • How we evaluate the available refrigerants

Traditionally commercial businesses have been using R12, a CFC, and R502a CFC/HCFC. In addressing the ozone depletion problem, most manufacturers have adopted either R404A a HFC blend or R134a. However, both are potent greenhouse gases (Nicholas Cox).

So the industry needs to look at future solutions which might be natural refrigerants, although some design change might be required on the equipment used. The following refrigerant replacements all require system and operational changes to current practice:

20140213_132647_resizedIsobutane (R600A) is a hydrocarbon , and hence is flammable. The thermodynamic properties that are very similar to those of R134a. Isobutane presents other advantages, such as its compatibility with mineral oil and better energy efficiency and cheaper than that of R134a. The use of isobutane requires minimal design changes, such as the relocation of potential ignition sources outside of the refrigerated compartment. Operational changes will also be required.

Propoane (R290). With a boiling point of -42C, propane is an excellent alternative to R22 as it requires similar working pressures. An added advantage is that except for added safety measures because of its flammability, virtually no design change is required in systems when switching from R22 to propane. The combination of its good thermodynamic and thermophysical properties yields systems that are at least as energy efficient as those working with R22. The use of propane is increasing in countries where regulations allow it.

Ammonia (R171). Ammonia has been continuously used throughout modern refrigeration history. Despite its numerous drawbacks, it is toxic and flammable in concentrations between 15.5% and 28% in air. It is not compatible with copper, thus requiring other materials of construction. Its thermodynamic and thermophysical properties also yield very efficient refrigeration systems. Because of its acute toxicity, stringent regulations apply for ammonia systems, which require close monitoring and highly skilled engineers and technicians.

20140213_132339_resizedCarbon dioxide (CO2) is not a new refrigerant. Rather, it was ‘rediscovered’ in the early 90’s. The use of carbon dioxide as a refrigerant has gone back well over a century. Its application was abandoned in the mid-50s, with the widespread use of the CFC refrigerants, which were more efficient, more stable and safer. Due to its low environmental impact, low toxicity and non-flammability, CO2 is now regaining popularity from refrigeration system designers when an alternative to fluorocarbons is being sought. (Ahmed Bensafi and Bernard Thonon)

So there are alternatives on the market and technology development is tackling this issue it is now up to the designers and operators to specify something new to move the industry forward. With F-Gas regulation 2 coming we need to get ahead of the game.

We have tried to cover some of the available refrigerants seen in the market and we will be evaluating and discussing the selection criteria in our future blogs.

%d bloggers like this: