Construction quality could be catching up with other industries

This blog was written by Lynne Ceeney, Technical Director at BSRIA

If you order steak and chips at a restaurant, but the waiter delivers hake in strips, you would be rightly annoyed. Instinctively you blame the waiter, but it could have been a problem with the ordering software, a misreading in the kitchen or just the wrong dish being picked up.  Whatever, you would send it back – it is not what you ordered.   In new buildings, this happens all the time.  Poor communication during the briefing, design and construction process, and poor handover and operation leads to a building that doesn’t deliver the performance the client thought they had ordered in the first place.  Unlike a dinner, it’s not practical to send a building back and wait for the one you asked for to be delivered.  Instead extensive snagging lists, expensive defect resolution and defensive “best we can do” fixes by the facilities team are often used to try and get the building closer to its intended performance – and “closer” is usually the best that can be achieved. The owner and occupier end up with a disappointing building, and the designers and construction company are left with a disappointed client.  The blame chain spreads, and it’s hard to pin down the fault.

The impacts run way beyond disappointment.  Occupier discomfort impacts staff retention, and the increased societal focus on wellbeing indicates that employees will expect higher standards from their place of work.  Poor commissioning or confusing controls mean building systems that don’t work properly and need constant attention or premature replacement, as the uncomfortable working conditions impact on worker productivity.  Inefficient buildings use more energy requiring more cash and causing more carbon emissions.  In fact buildings contribute 37% of UK green house gas emissions from gas heating, and consume 67% of the electricity used in the country.  It’s no wonder that larger investors are taking much more of an interest in the sustainability and performance of buildings rather than just the upfront capital cost.  Good buildings are an asset, poor buildings become an expensive liability in terms of operating costs and void periods. Competitive property markets compound this situation.

With a typical building having a life expectancy of at least 60 years, we are building in problems for this generation and the next.  We’re not great at mass retrofitting, (and the high demand for additional building stock means a capital, skills and material shortage) so we need to get it right first time.  Effective management tools with this aim abound in other sectors, for example DRIFT, (Doing it Right First Time), Six Sigma, LEAN and Zero Defects.  We see the approach being used in food manufacture, car making, pilot training, and patient healthcare, to name but a few sectors.  So what about construction?

Soft Landings is the equivalent tool for the construction sector.  This tried and tested process was developed to help to produce better performing buildings – not necessarily exceptional in performance, but buildings that deliver in operation what they were designed to do in the first place.  Getting a building right requires a shared focus on operational performance of the building right from the start, and throughout the design, construction and commissioning process.  The use of Soft Landings delivers this shared focus, improving communication and collaboration between all parties in the building delivery chain.  It helps everyone to avoid the pitfalls that diminish operational building performance. It fits with RIBA stages, integrates into existing construction processes, and does not require a specific building procurement model.  You can download Soft Landings guidance from the BSRIA website .

However it is always helpful to find out about real world experiences, and to talk to others who are using Soft Landings to help them to produce better buildings.  With this in mind, BSRIA have organised the 2017 Soft Landings Conference (June 16th 2017 at RIBA, Portland Place, London W1B 1AD). You will hear from a range of speakers from different parts of the construction process – including clients – who will explain how they have used Soft Landings in their projects, and the value that it has delivered for their buildings.  You will also hear their hints and tips, and there will be plenty of time to ask questions and take part in discussion both in conference and over lunch.

It’s time for the construction industry to catch up with other industries in terms of quality, to produce buildings that perform as expected, through a delivery process that gets it right first time.  Soft Landings is a process that helps the delivery chain to do this.  For more information on the conference please contact our Events Manager, Tracey Tilbry.

 

Being a Young Engineer

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

What is it like to be a young Engineer?

I think it’s fair to say the term Engineer in itself is very broad so for the purpose of this blog my focus is my discipline, Building Services Engineering.

So how did I become an Engineer? Through my love of maths and problem solving, I chose to study a common entry Engineering Degree in Dublin Institute of Technology. Following the first year of Maths, Applied Maths, Physics and Chemistry, I then chose the Building Services route as it seemed the most interesting to me and it was. It offered modules in a wide range of subjects from lighting design, fire engineering to smoke control and acoustics. As well as the heating, cooling and ventilation design as you would expect.

I graduated in 2010 from Dublin Institute of Technology to a bleak construction industry in Ireland so I looked elsewhere and succeeded in getting a job here at Cudd Bentley in Ascot. Since graduating and entering the workplace as a Consultant Engineer, no two days have been the same, each week offers new challenges and the range of projects I have been involved in has been exciting. Projects I have been involved in range from retail to residential, shopping centres to extensive refurbishment projects. I work as part of a team and although I am mainly office based, I regularly visit site to carry out inspections or for Design Team meetings, offering an enjoyable diversity to my job.

Quite quickly into my career I realised my interest in the area of Sustainable Engineering Design and with the support of my company, Cudd Bentley Consulting, I have completed a range of courses including CIBSE Low Carbon Energy Assessor, Elmhurst On Construction Domestic Assessor and Bentley Hevacomp modelling course to allow me to be proficient in thermal modelling and a Low Carbon Consultant. I really enjoy building modelling and have had the opportunity to work with some interesting models here at Cudd Bentley. I use my models to generate a variety of outputs including heat loss and heat gain calculations, energy and carbon saving potential, overheating analysis, Energy Performance Certification and Part L Compliance.

Sustainability is an area that I am particularly interested in and this year I have begun an MSc in Renewable Energy in Reading University. I enjoy learning and I don’t think I will ever be finished learning. Topics which I am particularly interested in currently are Nuclear Energy and the Feed in Tariffs Scheme for solar energy. I think it will be a real shame if the Government chose to drastically reduce the Feed in Tariff Scheme. I am also eager to see what will come from the Climate Change Conference, COP21, in Paris this month.

I have been attending events for the BSRIA Young Engineers Network for the past five years and I was delighted to be asked to be the Chairwoman of the Network this year. I would encourage all young Engineers to attend as it gives a unique opportunity to meet experts in their field, discuss current topics with your peers and to network with fellow young Engineers.

I was fortunate to be surrounded by highly experienced Engineers from the beginning of my career and one piece of advice I would offer every young Engineer is to immerse yourself in the knowledge of those people around you with such experience as well as making sure to put your own young and fresh approach to it where appropriate. The industry is constantly changing and it’s important to be constantly evolving.

Being a young Engineer is challenging, exciting and for me a fantastic career.

Is construction still a losing game for most women?

Julia Evans, BSRIA Chief Executive

Julia Evans, BSRIA Chief Executive

Politics is all about attempting to second-guess the mind of the electorate. Although cynics might cast a sceptical eye at the timing of the Cabinet reshuffle, the fact that women are more prominent in politics is a cause for celebration. After all, women make up 52% of Britain’s population, so increasing female ministers to around a quarter of the Cabinet (6 out of 17) is a belated step in the right direction1. But when there are so many talented women, why is it that more of them don’t achieve high office?

Before we cast too may stones, we in the construction industry need to have a good look in the mirror. Women make up just 11% of the workforce and our industry’s lack of progress towards equality is shameful. Aside from the lack of diversity, from a practical perspective, with one in five workers soon to reach retirement the industry needs to increase its skilled workforce. It needs to thus start attracting and retaining talented professionals regardless of gender, age or ethnicity (needless to say, ethnic minorities are also under-represented in construction2).

Women have struggled to get an equal footing in construction, but the representation of women in our industry has waxed and waned in recent history, demonstrating that, left to chance, both government leadership and the fluctuating demands for skilled labour can be persuasive. Perhaps Nicky Morgan, the new Minister for Women and Equalities ought to have something to say about this too.

According to the Office for National Statistics (ONS), the number of women who work as roofers, bricklayers and glaziers is currently so low as to be essentially unmeasurable. It hasn’t always been like this. In the 18th century, women in Britain worked as apprentices “in a host of construction occupations, including as bricklayers, carpenters, joiners and shipwrights”. However, by the early 19th century, with changes in legislation and new divisions of skilled/unskilled labour, women became increasingly excluded. By 1861 trades including that of carpenter, plumber, painter, and mason, were subsequently largely ‘male’3.

The First World War led to a marked increase in women in the building trades through a government agreement with the trade unions which “allowed women into skilled male jobs as long as wages were kept low and they were released at the end of the war”. During the second world war, there was similarly an estimated shortage of 50, 000 building workers, so the National Joint Council for the Building Industry agreed that employers should identify whether any men were available first before a role was filled by a woman (who earned, on average, 40% less their male counterparts—and it’s still not perfect now, with women earning c10% less4). The bias of the apprenticeship systems and trade unions were largely responsible for the fact that women in the building industry declined once more from the 1950’s to ‘70s3.

We’re currently back to the issue of a lack of available skilled labour. The government recognises this, and I welcome the recently announced BIS funding call specifically designed to help women progress as engineers. The funding will support employer-led training to encourage career conversions and progression in the industry. This call is in response to a recent report identifying that “substantially increasing the number of engineers would help the UK economy […] and the potential to significantly increase the stock of engineers by improving the proportion of women working in engineering jobs”5.

Carbon Comfort event 14th March-lowFunding new training opportunities is a great step forward, but to see real change we need industry leaders to be proactive in embedding a more diverse and inclusive work culture. The majority of women aged 25-45 find that attitudes, behaviours and perceptions are the greatest barriers3.

If you feel there is nothing new in the story, then the words ‘ostrich’ and ‘sand’ come to mind. It is about you. It’s about you and how you and your business behave now, not just when we have the time given that the recession is over and it’s a ‘nice to do’.

So, inspirational leadership—and not just policy—will foster a more inclusive and skilled workforce. Look around you. How many women are in senior management roles? What is your office culture really like? Is your organisation progressive or part of the problem? And, most importantly, what are you going to pledge to do about it?

1 Reshuffle 2014: Women control one in four pounds of government spending. Huffington Post, 15 July 2014

Inquiry into Race Discrimination in the Construction Industry, Action Plan. Equality and Human Rights Commission, 2010

3 Building the future: women in construction, The Smith Institute, 2014

Gender pay gaps 2012. David Perfect, Equality and Human Rights Commission Briefing Paper 6.

 Employer ownership: developing women engineers,BIS, 23 June 2014

Why do women leave architecture? Ann de Graft-Johnson et al., 2003.

If you are interested in careers at BSRIA then please check out our website. We also have an extensive training programme covering topics like BIM and the Building Regulations. 

Refrigeration Part 1 – Choosing the right refrigerant

Salim Deramchi, Senior Building Services Engineer at BSRIA

Salim Deramchi, Senior Building Services Engineer at BSRIA

Refrigerants are a key component for air conditioning and refrigeration. Since the 19th century there have been many refrigerants developed and used but none of them has as yet become the industry standard.

As an industry we should not consider reducing F-Gas emissions as just complying with legislation to meet government set targets, but reducing them will also have a positive effect on operating costs.  We can make cost savings through efficient operation and we can also help enhance market reputation by being more environmentally friendly.

To have a good understanding of this we need to look at:

  • Available refrigerant types
  • Our selection criteria
  • How we evaluate the available refrigerants

Traditionally commercial businesses have been using R12, a CFC, and R502a CFC/HCFC. In addressing the ozone depletion problem, most manufacturers have adopted either R404A a HFC blend or R134a. However, both are potent greenhouse gases (Nicholas Cox).

So the industry needs to look at future solutions which might be natural refrigerants, although some design change might be required on the equipment used. The following refrigerant replacements all require system and operational changes to current practice:

20140213_132647_resizedIsobutane (R600A) is a hydrocarbon , and hence is flammable. The thermodynamic properties that are very similar to those of R134a. Isobutane presents other advantages, such as its compatibility with mineral oil and better energy efficiency and cheaper than that of R134a. The use of isobutane requires minimal design changes, such as the relocation of potential ignition sources outside of the refrigerated compartment. Operational changes will also be required.

Propoane (R290). With a boiling point of -42C, propane is an excellent alternative to R22 as it requires similar working pressures. An added advantage is that except for added safety measures because of its flammability, virtually no design change is required in systems when switching from R22 to propane. The combination of its good thermodynamic and thermophysical properties yields systems that are at least as energy efficient as those working with R22. The use of propane is increasing in countries where regulations allow it.

Ammonia (R171). Ammonia has been continuously used throughout modern refrigeration history. Despite its numerous drawbacks, it is toxic and flammable in concentrations between 15.5% and 28% in air. It is not compatible with copper, thus requiring other materials of construction. Its thermodynamic and thermophysical properties also yield very efficient refrigeration systems. Because of its acute toxicity, stringent regulations apply for ammonia systems, which require close monitoring and highly skilled engineers and technicians.

20140213_132339_resizedCarbon dioxide (CO2) is not a new refrigerant. Rather, it was ‘rediscovered’ in the early 90’s. The use of carbon dioxide as a refrigerant has gone back well over a century. Its application was abandoned in the mid-50s, with the widespread use of the CFC refrigerants, which were more efficient, more stable and safer. Due to its low environmental impact, low toxicity and non-flammability, CO2 is now regaining popularity from refrigeration system designers when an alternative to fluorocarbons is being sought. (Ahmed Bensafi and Bernard Thonon)

So there are alternatives on the market and technology development is tackling this issue it is now up to the designers and operators to specify something new to move the industry forward. With F-Gas regulation 2 coming we need to get ahead of the game.

We have tried to cover some of the available refrigerants seen in the market and we will be evaluating and discussing the selection criteria in our future blogs.

%d bloggers like this: