Indoor air quality: 7 contaminants to be aware of

In the UK, on average people spend more than 90% of their time indoors.

Indoor air quality is affected by outdoor pollution, but also by indoor sources and inadequate ventilation. Air pollution can have a negative impact on our health; from short term effects such as eye irritation and coughs to long term effects such as respiratory infections and cancer.

Here, we take a look at contaminants commonly found in buildings. For more information on how to manage indoor air quality, please visit the BSRIA Air Quality Hub.

Carbon Dioxide

A colourless and odourless gas resulting from combustion and breathing. At higher concentrations carbon dioxide can cause drowsiness, fatigue, and dizziness as the amount of oxygen per breath is decreased. In an enclosed environment, ventilation is key to reduce carbon dioxide build-up.

Carbon Monoxide

An odourless and colourless gas produced by incomplete combustion of fuels such as oil, wood, and gas. Carbon monoxide binds with haemoglobin in blood cells instead of oxygen, rendering a person gradually unconsciousness even at low concentrations.

Ozone

Whilst beneficial in the stratosphere, when found at ground level, ozone causes the muscles found in the respiratory system to constrict, trapping air in the air pockets, or alveoli. Ozone can be produced by certain air purifiers, laundry water treatment appliances and facial steamers.

Particulate Matter 2.5

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles are 2.5 microns or smaller. PM2.5 sources include transportation, power plants, wood and burning and can cause airway irritability, respiratory infections, and damage to lung tissue. 

Particulate Matter 10

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles is 10 microns or smaller. PM10 sources include construction sites, industrial sources, and wildfires. These inhalable particulates can obscure visibility, cause nasal congestion, and irritate the throat. 

Formaldehyde

A colourless gas that is flammable and highly reactive at room temperature. Formaldehyde is a carcinogen and a strong irritant. Formaldehyde can be found in building materials, resins, paints, and varnishes and can last several months particularly in high relative humidity and indoor temperatures.

Total Volatile Organic Compounds

Carbon-based chemicals that easily evaporate at room temperature, most commonly found in building materials, cleaning products, perfumes, carpets and furnishings. Long term exposure can cause, cancer, liver, and kidney damage whilst short term exposure can cause headaches, nausea, and dizziness.

Find out more about air quality at the BSRIA Air Quality Hub.

Heat Pumps and Heat Waves: How overheating complicates ending gas in the UK

by Dr Aaron Gillich | Associate Professor and Director of the BSRIA LSBU Net Zero Building Centre

We have entered what many are calling the decisive decade on climate action. Among the most critical decisions that the UK faces this decade is how it will eliminate carbon emissions from heat. Heat accounts for over a third of our emissions, and over 80% of our buildings are linked to the gas grid. There is no pathway to Net Zero that doesn’t include ending the use of gas as we know it in the UK.

Given the size of the UK gas grid, no single technology or energy vector can replace it. We will need a combination of clean electricity and carbon‐free gas such hydrogen or biogas, delivered by a range of enabling technologies such as heat pumps and heat networks. And of course an extremely ambitious retrofit agenda that reduces the demand for heat in the first place.

The UK is investing widely in low carbon heating innovation. That innovation is essential, but is also unlikely to include any blue‐sky breakthroughs that aren’t currently on the table. In other words, the menu of low carbon heating technology options is set, and this decisive decade will be about deciding what goes best where, and how to ensure a just and equitable heat transition.

Low-carbon heating options

Of all the low‐carbon heating options available, low carbon heat pumps are the most efficient and scalable option that is market ready and can respond to the urgency of climate change this decade. The UK has set a laudable target of installing 600,000 heat pumps per year by 2028. Many have criticized this figure as unrealistic, but I believe that the target is highly achievable, and represents a pace that is in line with past transitions such as ‘the Big Switch’ that put us on the gas grid in the first place.

This race to replace gas in the UK has been widely discussed. As have the many barriers that face heat pump deployment in the UK. What I’ve heard discussed far less are the links between heating in the winter and overheating in the summer. Over the next decade, the end of gas will present both a threat and an opportunity to improve both the winter and summer performance of our building stock.

The threat of climate change is clear. The end of gas increases this threat because gas has allowed the UK to obscure poor building performance, and poor building knowledge for so long. Cheap gas has enabled a ‘set it and forget it’ approach to many building systems, and allowed us to maintain reasonable standards of comfort in most buildings despite very poor fabric performance. The irony is that this poor winter performance actually helps reduce the risk of overheating in the summer, as the leaky and poorly insulated buildings can more easily shed excess heat. It has been widely reported that many newer, better insulated buildings actually face an increased risk of summer overheating.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss. There are many that argue heat pumps in fact require extensive fabric retrofit in order to function in most UK buildings. This is highly debatable and will be explored in detail in follow-up writings. Regardless, demand reduction and a fabric first approach is a good idea for its own sake.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss.

But reducing the heat loss in winter will likely trap heat in the summer, presenting a conflict. The UK currently experiences over 20,000 excess winter cold deaths and around 2,000 heat related deaths in summer. It was previously thought that the increased temperatures from climate change would decrease winter cold deaths, but more recent work has shown that due to the increases in extreme weather events at both ends of the spectrum, it is far more likely that winter cold deaths will remain at similar levels, and summer heat deaths will increase dramatically under climate change.

We must use the transition from gas to low carbon heating as an opportunity to better understand our buildings. Many of 600,000 heat pumps we install by 2028 will be in new build, but up to half will need to be from existing homes.

Retrofitting a heat pump is also the time to think about not only how to improve energy efficiency for the winter but how to reduce summer overheating as well. Despite much effort towards a whole‐house approach to retrofit, most work remains quite siloed. Energy efficiency and heating installations are largely in separate supply chains, and the building physics knowledge to carry out an overheating risk assessment is even less likely to sit with the same project team. Overheating is also very poorly captured by the building regulations and planning process.

A holistic approach

The last few years has seen a growing awareness of overheating risk and an emergence of increasingly easy to use assessment tools. A very small fraction of UK homes have comfort cooling. Retrofitting a comfort cooling solution typically requires costly and complex changes to distribution systems. However, there are a range of low cost options, including using local extract fans to create interzonal air movement, or using night purges and thermal mass. Blinds are also incredibly useful, but often misused in summer, and can also help reduce heat loss in winter. There are also ways to use local microclimate features such as shaded areas or the North side of the building to bring in slightly cooler air from outside and reduce peak temperatures.

Improving the air tightness and fabric performance of our buildings to address heating in the winter will change how we implement these solutions for the summer. They require not only careful thought at the design stage, but also strong communication to help end users operate them properly. Simply opening a window is unlikely to help if the outside air is warmer than inside.

A significant problem is that there are insufficient drivers to force this type of holistic approach to design, performance, and communication. It is so often said that we need stronger policies in the area of heat and retrofit, and this is no doubt true. But while we await these policies it is incumbent upon each of us in this sector to share and collaborate as widely as possible, and use whatever influence we have over a given project to encourage a fair and forward looking solution.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail. Climate change is the catalyst for an untold level of change in our lives that we are going to start to truly experience in the coming decade. Heating and overheating are coupled issues that must be solved together. We must use the end of gas as an opportunity to understand our buildings better, and implement solutions to climate change that work across seasons, or we risk trading one problem for another.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail.

What makes a good PICV?

by Andrew Pender, National Sales Manager at FloControl Ltd.

Over the last 5 years, PICVs have been widely accepted as the best method of terminal control in variable flow systems due to their energy saving potential.  The surge in popularity has led to an influx of products with varying designs, features and functionality.  This article reviews some of the mechanical PICV design elements and how they can impact on the PICV’s performance in an applicational context.

Where do we start?

To help specifiers and project engineers assess which PICV is best suited for an application, the BSRIA BTS1/2019 standard has been developed to provide a consistent test method for PICV manufacturer’s products to be benchmarked against.

Manufacturers should be able to provide test results in line with this technical standard which covers:

  • measured flow vs nominal flow
  • pressure independency or flow limitation
  • control characteristics, both linear and equal percentage
  • seat leakage test

Repeatability & Accuracy are central to the tests and they are key to good temperature control and realising the full energy saving potential of a PICV installation.

An accurate PICV means the measured results will be equal or very close to the manufacturer’s published nominal flow rate each time it is measured, known as low hysteresis.

Accuracy has a positive impact on a building’s energy consumption.  “Measured over time, a 1% increase in the accuracy of a PICV can result in a reduction of around 0.5% in the building’s overall hydronic energy consumption” (FlowCon International).

Valve accuracy is driven by the design, manufacturing process and material used for the internals of the valve.

  • The design of the PICV should allow for Full Stroke Modulating Control at all flow settings without any stroke limitation.  The flow setting and temperature control components should operate independently.  Some PICV designs use the stroke of the actuator stem to set the flow rate resulting in limited stroke and control.  This can cause issues at low flow rates whereby the PICV effectively becomes on/off irrespective of actuator selection.  
  • The manufacturing process and the component materials also contribute to accuracy. For example, injection-moulded, glass-reinforced composite materials cope better with water conditions that valves can be exposed to.  They also have less material shrinkage than other materials, delivering higher accuracy than valves that use alloy components.

What else should be considered?

The importance of accuracy and repeatability are paramount when selecting a PICV however there are other factors that should be considered:

  • Wide flow rate range – including low flow rates for heating applications, ideally covered by a small number of valves.
  • Setting the flow rate – setting the PICV can influence the accuracy. There are various scales used including set points related to flow rates and percentages. PICVs with very detailed scales with small increments between set points are more difficult to set accurately, leading to higher tolerances than the BSRIA standard recommended + 10%.
  • Wide ΔP Range – low start up pressure. To operate satisfactorily, the PICV requires a minimum pressure differential to overcome the initial spring resistance within the PICV, enabling the spring to move and take control. Care should be taken to ensure the minimum pressure differential is as low as possible to maximise the energy saving potential of the system.  The maximum DP should also be considered to ensure the PICV operates effectively under part load conditions.
  • Dirt tolerance – the Valve Control Opening Area [A] on all PICVs, irrespective of the manufacturer, is identical for each flow rate. The shape of the Control Area can be different depending on the valve design. A Rectangular flow aperture is more tolerant than an Annular flow aperture. Debris will pass through the rectangular aperture more easily.
  • Removable inserts – deliver the greatest flexibility and serviceability.  Products can be easily serviced in line without disruption. This is especially of value when water quality is poor or when flow requirements change due to changes in space usage.  Inserts can also be removed during flushing.  Valve bodies can be installed with blank caps eliminating the risk of damaging or contaminating the PICV element, whilst having a full-bore flushing capacity.
  • Installation – PICVs in general have no installation restrictions however in line with BSRIA BG29/20, it is recommended that PICVs should be installed in the return branch as small bore PICVs will have a high resistance which will hinder the flushing velocity during the forward flushing of terminal units.

Making the right choice

There are many aspects for specifiers and project engineers to consider when selecting the right PICV for an application.  The BTS1/2019 standard provides an excellent benchmark, but the individual designs also need to be carefully considered.  A correctly selected PICV will ultimately lead to a more comfortable indoor climate with better control of the space heating and cooling as well as potentially reducing the pump energy consumption in a building by up to 35%.

This post was authored by Andrew Pender, National Sales Manager at FloControl Ltd. All views expressed are those of the author. If you belong to a BSRIA Member company and wish to contribute to the BSRIA Blog, please contact marketing@bsria.co.uk

Maintenance of drainage systems to prevent flooding and water pollution

By David Bleicher
BSRIA Publications Manager

Every building has a drainage system. In fact, most have two – a foul drainage system that takes waste from toilets, showers etc. and a storm/surface water drainage system that takes rainwater from roofs and paved areas. Older buildings may have a combined system, and in some locations the infrastructure buried under the street is a combined sewer – a legacy from the pioneering days of city sewerage systems.

As with maintenance of any building services systems, the first step is to know what you’ve got. Every site should have a drainage plan, showing which drains are located where, what direction they flow in and what they connect to. If there isn’t one, it’s not hard to create one – even though the pipes are buried, there’s plenty of evidence above ground in the form of manholes.

When there is a drainage plan, it’s worth checking how correct and up-to-date it is. Sometimes, the exercise of doing this brings up evidence of mis-connections, such as a new loo discharging into a storm manhole. It’s also worth marking drain covers with the service (F for foul or S for storm) and a direction arrow.

Drainage manhole over showing 'S' arrow to indicate storm drainage and direction of flow.

In foul drainage systems, the biggest headaches are caused by things going down the drain which shouldn’t – like wet wipes, sanitary products and hand towels. So the best form of preventative maintenance is to keep building occupants informed, with polite notices and clearly-marked bins in strategic places. Then there is the fats, oils and greases (FOG) that go down the plughole in catering establishments. If these find their way into the drains and sewers, they’re pretty much guaranteed to solidify and cause blockages – sometimes known as ‘fatbergs’. That’s why there should always be an interceptor in place, also known as a grease trap. This needs maintenance – the generic frequency for cleaning out a grease trap, stated in SFG20 (a common approach to planned preventative maintenance), is monthly. But this will be highly dependent on how the facility is used.

If blockages go unchecked, they may also go unnoticed. That is until sewage starts backing up into the building, or overflowing into storm sewers, which eventually discharge into lakes and rivers. These are delicate ecosystems, and the introduction of detergents and faecal matter can be very harmful to aquatic life and of course humans.

Rain, can pick up contaminants from both the air and the land, so once it has reached a storm/surface water drainage system, it has picked up dirt, oil and chemicals from air pollution, roofs and paved areas. Traditional systems have no means of dealing with this, and also must be sized for occasional extreme storm events, so the pipes are very large and mostly used at a fraction of their capacity. Sustainable drainage systems, or SuDS, attenuate the flow of rainwater to watercourses and emulate the way natural ecosystems treat this water. But they need maintenance. For example, any tree routes that could block a soakaway should be trimmed annually, and green roofs may require weeding on a weekly basis during the growing season.

For more information on the maintenance of drainage systems, please explore the BSRIA Information Service

Acoustics in the workplace – What’s the “new normal”?

Rebecca Hogg
Acoustic Consultant, BSRIA

Wooden blocks spelling 'new normal'

There is no denying global events this year have turned every aspect of our lives upside down, and as we all start to try and get back to normal while lockdown restrictions ease, we realise it is a “new normal”.

Workplaces have changed, some almost unrecognisable from before, and there is a myriad of requirements to consider beyond the essential health and safety measures. Occupant wellbeing was a prominent consideration prior to lockdown, and this included provision of a good acoustic environment, but how are new COVID-secure workplaces affecting the acoustic environment?

For many years there have been acoustic standards and guidelines on internal noise levels in offices, determining sound power levels of building plant, and predicting the sound absorption of materials. Well designed open-plan offices have allowed large groups of people to collaborate and communicate effectively, and noise regulations have ensured factories and construction sites operate without disturbing neighbours.

In recent months, the workplace has been turned on its head. Following government guidelines many people began working from home. Suddenly the familiar hum of the workplace was replaced in some instances with squabbling children or impatient pets, and if you live alone maybe unwelcome silence replaced your usual face-to-face conversations.

As people are gradually allowed to return to a place of work, new COVID-secure offices have changed the acoustic environment. The installation of screens, the partitioning of open plan spaces, wearing of face coverings, and a lower level of occupancy have created acoustic challenges. For example, speech intelligibility is affected by the reverberation time of a space. Fewer people and more reflective materials, such as plastic screens, will decrease the sound absorption and increase the reverberation time, resulting in poorer speech intelligibility.

Building services have been specified, installed, and commissioned for a particular set up of a workplace layout and building occupancy. If a space is divided into individual offices to allow for social distancing, then the building services provision also needs to be reconsidered. Changing the control settings of a system will have an impact on the internal noise levels and subsequently on levels of occupant annoyance.

Not everyone works in an office, so, what about situation in different workplaces? Factories, shops, and construction sites have been redesigned to allow for social distancing, and often operating hours have been extended to allow for shift patterns, potentially increasing noise nuisance for neighbours.

In these environments the noise levels are also often higher and communication between people can therefore be harder. People working further away from each other and wearing face coverings will inhibit successful communication and influence performance, and if someone must shout to be heard does this have the potential to spread virus droplets further? There should also be consideration of the highly overlooked 12 million people in the UK who suffer from some level of hearing loss. Being unable to lip read because someone is wearing a face covering, or unable to hear the conversation over a bad video conferencing link is incredibly frustrating and isolating.

The acoustic challenges within a COVID-secure workplace may seem overwhelming but there are several simple solutions. Firstly, identify noise sources in the workplace and maintain them appropriately to minimise background noise.

Something as simple as cleaning filters inside a fan coil unit can increase airflow and capacity, meaning the fan speed can be reduced and subsequently the noise level.

Secondly, examine acoustic specifications of any new products being installed – ask to see test reports and consider how a new product could influence the acoustic environment.

Finally, consider the occupants of your workplace and how they use the space. Tailoring the acoustic environment to the needs of the occupants can increase productivity, decrease annoyance and overall improve the wellbeing of all. The focus on workplace safety is paramount, but long-term considering other design parameters, such as the acoustic environment, will ensure workplaces not only survive but thrive.

BSRIA acoustic experts publish guidance, and support our members and clients with a range of acoustic testing solutions. Read more about our UKAS-accredited laboratory for acoustic testing to BS EN ISO 3741, BS EN 12102 and BS EN ISO 354 here.

The importance of investigating failures in building services

Pinhole corrosion of radiator (outside surface)
Pinhole corrosion of radiator (outside surface)

A study from the UCL(1) revealed that building failures may cost the UK construction industry £1bn to £2bn every year. This was a conservative estimate made in 2016, based on 1 to 2% of the total value of construction.

As of March 2020, the Office for National Statistics has estimated the total value of all UK construction works to be worth £12.7bn, 68% of which is for new buildings or the repair and maintenance of existing buildings. This would give an estimated cost of failure between £85m and £170m, of which building services would account for a high proportion.

(1) Razak, D S A, Mills, G and Roberts, A (2016) External Failure Cost in Construction Supply Chains. In: P W Chan and C J Neilson (Eds.)

Types of failures in building services

Bathtub curve regarding types of failures in buildings
Bathtub curve

The typical pattern of failure arising against time is shown by the well-known bathtub curve. The curve is divided into three segments: an infant mortality period, usually marked by a rapidly decreasing failure rate; a random failure period, where the failure rate continues at a

The first period is usually detected during the defects liability period after a project is handed over.

The second period would happen during the operation of a system, and failures may occur due to inappropriate operating conditions or maintenance regimes.

The third period is when the system is reaching the end of its life. Failure could be imminent and there should be little or no surprise in this happening.

Importance of investigating these failures

Showing house made of money i.e. there is cost in everything, so always investigate to prevent repetitive failures
There is cost in everything: Always investigate to prevent repetitive failures

There are various reasons why every unexpected failure should be investigated. Below are some of the key ones:

  • Insurance purposes. Insurers may require an independent evaluation of the failure and investigation of its possible cause to identify possible fraudulent or malicious intentions.
  • Cost savings. Too often, failed components are replaced without investigating the root cause. Without understanding the origin of a failure, it is not possible to prevent its re-occurrence. Repetitive failure and replacement of components could add significantly to the operating cost for a building or estate.
  • Health and safety. In May 2009, a lift at London’s Tower Bridge tourist attraction suffered a vital mechanism failure that sent it falling with 9 people in it, four of whom suffered bone fractures. The malfunction was caused by the failure of a counterweight mechanism. The accident investigation by the HSE revealed that there had been several previous component failures with the counterweight mechanism, and the components had been replaced without proper review, and with no investigation into why they were failing so early. Tower Bridge was ordered to pay a total cost of £100k, and the HSE concluded that, had there been a proper review into the counterweight mechanisms, the catastrophic failure of the lift could have been avoided.

BSRIA can help with building services investigations

BSRIA has been in the building services industry for over 60 years and has been involved in hundreds of investigations.

Our independence makes us the ideal partner to provide non-biased failure investigations. Our expertise and capability in testing various materials and components of building services to determine the likely cause of failure is unique. We are able to perform investigations on site, examinations in our labs and analysis in our offices.

Our professional approach is such that there is no failure too large or too small to investigate today because this can save lives and costs tomorrow.

Read more about BSRIA’s Failure Investigation service here

Author: Martin Ronceray, BSRIA Engineering Investigation Lead

The BSRIA investigation team can be contacted at

+44 (0) 1344 465578

Investigations@bsria.co.uk

BSRIA and our approach to BIM

As part of an upcoming BIM blog series following on from the Open BIM REC webinar series BSRIA answered the following questions.

What has been the key to your success with BIM?

The key to a successful BIM project, based on our current experience, has been using a procurement method which promoted truly collaborative working.  It can be difficult when each party is employed against their own particular scope to ensure everyone works together.  One party may have to decide to do either what is best for the project or what they have been specifically employed to do – these are not always compatible.

How many BIM projects have you been involved in?

We have been involved in one project which has reached site which is trying to adopt BIM Level 2 throughout the project duration.  The project is currently on site and is due to complete in July 2017.

Where was your greatest BIM challenge to start with and what shortcuts are available now (if any) that were not available when you started on your BIM journey?

The greatest challenge was to convert the BIM Level 2 documents into working project processes.  There is a huge gap between the BS/PAS 1192 documents etc. and working project practices and procedures and the amount of effort involved to achieve this shouldn’t be underestimated.

The instances of useful and practical information and tools to enable BIM Level 2 requirements to be incorporated into real projects have not materialised. Some of the tools provided by the Government do not work in practice.  As a result, a more flexible approach to BIM Level 2 is being put in place.

How can industry ensure that clients receive the full benefits of BIM?

The best way for the industry to ensure that clients receive the full benefits of BIM is to listen to the client.  The industry is focussed on telling the client what they will get based on their own skills (often modelling skills rather than true BIM Level 2 capabilities), and too often they don’t look at how the client will use the information generated through the project in the operation of the asset once handed over.

What else can be done to help improve collaboration within the construction industry?

The best way to improve collaboration within the construction industry is to use a form of procurement which truly promotes collaborative working. We’ve been reviewing Integrated Project Insurance as one method and can see some real benefits.

To find out more about BSRIA’s BIM services and advice please visit our website. We also have a collection of BIM blogs by our BSRIA experts. 

Introducing….BG71/2017 Building Services Reports

This blog was written by Richard Tudor, Technical Director at WSP

Anyone involved in technical work can appreciate the challenges presented when trying to communicate their ideas, information, proposals or recommendations to others.

To be effective an engineer must develop skills in the preparation of all types of communication and the ability to write clear, concise reports is an asset for any designer.

A designer must be able to translate engineering solutions and design intent into an understandable written form in such a way that the reader, often non-technical or with little building services knowledge, can understand. The need to communicate with clients and other professionals effectively is essential.

A report is a form of communication that is written for a specific purpose and aimed at a particular audience. There are various types of reports utilised in the industry which are used for different purposes that can range from communicating design to expert witness reporting.

BG71/2017 Building Services Reports explores various types of reports with the aim to:

  • provide guidance in promoting consistency through common report definition
  • provide an aide-mémoire by outlining report considerations
  • improve efficiency in report preparation
  • help develop technical writing skills

The report types covered include feasibility, thermal modelling, design stage, technical due diligence and expert witness.

For each type of report covered, the guide aims to outline what that report should achieve, in addition to highlighting key points and guidance to assist the reader in developing their own particular report structure. The appendices propose considerations, levels of information and typical headings for some of the reports with the aim to provide an aide-mémoire to further assist the reader. The considerations are not exhaustive and the final content of reports, together with headings, will vary according to the type of project and its particular requirements.

The design process involves the preparation of various types of reports with different objectives and purposes in conveying information.  It is important that any design stage report provides the correct level of information at the right point in the project delivery process and conveys technical information in a clear and easily accessible format.  The guide examines design reports prepared at RIBA stages 2 and 3 and proposes key aims for each report to assist in understanding their objectives and considerations with respect reporting at these design stages.

Every company has a different style but the ability to plan and prepare reports in an efficient manner can often save time and avoid unnecessarily lengthy documents. The guide looks at the elements of planning a report to help facilitate the efficient preparation of documents and outlines the key activities at the various stages of the planning process.

For any report, the information provided should be easy to find and written in such a way that the reader can understand it. The guide explains the common components of a typical report to assist in structuring a document together with planning the content and organising information.  Comparisons can be very important in technical reports and the guide looks at the ways comparisons can be organised to help readers understand a topic better, as well as assisting the decision process of choosing one option out of a group.

The publication provides a useful guide in developing technical writing skills, with tips and key considerations for report preparation.

 

Richard Tudor

Richard Tudor is a Senior Technical Director with WSP and has been an integral part of their Group Technical Centre since 1999. His responsibilities include technical quality, specification development, knowledge management, technical training, designing for safety, technical support and improving project delivery.

Richard is a building services engineer with over 43 years’ experience in the industry covering design and project management spanning most industry sectors.

For many years’ he has participated in various BSRIA publication steering groups and is currently a member of the BSRIA publications review panel.

In addition Richard has authored several BSRIA publications and lectures on Safety in Building Services Design, a one-day training course.  BSRIA publications Richard has authored include:

 

 

 

Construction quality could be catching up with other industries

This blog was written by Lynne Ceeney, Technical Director at BSRIA

If you order steak and chips at a restaurant, but the waiter delivers hake in strips, you would be rightly annoyed. Instinctively you blame the waiter, but it could have been a problem with the ordering software, a misreading in the kitchen or just the wrong dish being picked up.  Whatever, you would send it back – it is not what you ordered.   In new buildings, this happens all the time.  Poor communication during the briefing, design and construction process, and poor handover and operation leads to a building that doesn’t deliver the performance the client thought they had ordered in the first place.  Unlike a dinner, it’s not practical to send a building back and wait for the one you asked for to be delivered.  Instead extensive snagging lists, expensive defect resolution and defensive “best we can do” fixes by the facilities team are often used to try and get the building closer to its intended performance – and “closer” is usually the best that can be achieved. The owner and occupier end up with a disappointing building, and the designers and construction company are left with a disappointed client.  The blame chain spreads, and it’s hard to pin down the fault.

The impacts run way beyond disappointment.  Occupier discomfort impacts staff retention, and the increased societal focus on wellbeing indicates that employees will expect higher standards from their place of work.  Poor commissioning or confusing controls mean building systems that don’t work properly and need constant attention or premature replacement, as the uncomfortable working conditions impact on worker productivity.  Inefficient buildings use more energy requiring more cash and causing more carbon emissions.  In fact buildings contribute 37% of UK green house gas emissions from gas heating, and consume 67% of the electricity used in the country.  It’s no wonder that larger investors are taking much more of an interest in the sustainability and performance of buildings rather than just the upfront capital cost.  Good buildings are an asset, poor buildings become an expensive liability in terms of operating costs and void periods. Competitive property markets compound this situation.

With a typical building having a life expectancy of at least 60 years, we are building in problems for this generation and the next.  We’re not great at mass retrofitting, (and the high demand for additional building stock means a capital, skills and material shortage) so we need to get it right first time.  Effective management tools with this aim abound in other sectors, for example DRIFT, (Doing it Right First Time), Six Sigma, LEAN and Zero Defects.  We see the approach being used in food manufacture, car making, pilot training, and patient healthcare, to name but a few sectors.  So what about construction?

Soft Landings is the equivalent tool for the construction sector.  This tried and tested process was developed to help to produce better performing buildings – not necessarily exceptional in performance, but buildings that deliver in operation what they were designed to do in the first place.  Getting a building right requires a shared focus on operational performance of the building right from the start, and throughout the design, construction and commissioning process.  The use of Soft Landings delivers this shared focus, improving communication and collaboration between all parties in the building delivery chain.  It helps everyone to avoid the pitfalls that diminish operational building performance. It fits with RIBA stages, integrates into existing construction processes, and does not require a specific building procurement model.  You can download Soft Landings guidance from the BSRIA website .

However it is always helpful to find out about real world experiences, and to talk to others who are using Soft Landings to help them to produce better buildings.  With this in mind, BSRIA have organised the 2017 Soft Landings Conference (June 16th 2017 at RIBA, Portland Place, London W1B 1AD). You will hear from a range of speakers from different parts of the construction process – including clients – who will explain how they have used Soft Landings in their projects, and the value that it has delivered for their buildings.  You will also hear their hints and tips, and there will be plenty of time to ask questions and take part in discussion both in conference and over lunch.

It’s time for the construction industry to catch up with other industries in terms of quality, to produce buildings that perform as expected, through a delivery process that gets it right first time.  Soft Landings is a process that helps the delivery chain to do this.  For more information on the conference please contact our Events Manager, Tracey Tilbry.

 

Ideas competition – How would you make buildings better?

PrintBSRIA and Designing Buildings Wiki are giving you the chance to win £500 of BSRIA membership, training or publications and to be featured in Delta T magazine by suggesting ways that buildings can be made to perform better. Gregor Harvie, co-founder of Designing Buildings Wiki explains why.

The UK government’s commitment to progressively reduce carbon emissions compared to 1990 levels is broadly in line with the COP21 goal agreed in Paris last year for keeping global warming well below 2 degrees centigrade.

But the Climate Change Committee has reported we are not on track to meet the fourth carbon budget, which covers the period 2023-27, and that meeting the 2050 target, a reduction of more than two thirds compared to today’s levels, will “…require existing progress to be supplemented by more challenging measures.”

construction emissions The construction industry generates or influences 47% of UK carbon emissions, and 80% of those emissions are from buildings in use. So unless the performance of buildings is improved, we will struggle to meet our carbon reduction commitments or the COP21 goal.

The tightening of the building regulations is intended to help deal with this. But figures from Innovate UK’s Building Performance Evaluation Programme have revealed that the carbon emissions of the 76 homes assessed were 2.6 times higher than their building regulations calculations, and emissions of the non-domestic buildings were 3.8 times higher.

And of course the building regulations do little to improve the existing building stock. Its estimated that around two thirds of the housing that will be occupied in 2050 has already been built.

emissions target v actualIn fact, our actual energy consumption has changed relatively little since the 1970’s, and the reduction in carbon emissions achieved to date has largely been the result of a shift away from coal powered generation. Now that the low hanging fruit have been taken, the task gets harder.

Couple this with a population expected to rise from 65 million now to around 77 million by 2050, and we have a problem.

So what can be done?

BSRIA and Designing Buildings Wiki have launched an ideas competition asking ‘how would you make buildings better’.

The challenge requires outside the box thinking to come up with radical ideas for reducing the emissions of buildings in use. Tell us about those innovations you think of in the middle of the night and the solutions to the world’s problems you only come up with after a few hours in the pub. Whether you think the answer lies in the adoption of smart technology, better regulation, on-site generation, monitoring and feedback, or more drastic measures such as carbon rationing or a contractual requirement for buildings to achieve design standards. The more innovative and far-reaching the idea the better.

The competition is very simple to enter. You don’t need to write a long essay, your idea might only take a paragraph, or even a sentence to explain.

To enter, go to the ‘Make buildings better’ page on Designing Buildings Wiki 

The winner will receive £500 worth of BSRIA membership, training or publications, and along with 4 runners-up, will be featured in the July edition of BSRIA’s Delta T magazine and on Designing Buildings Wiki.

The competition closes on Wednesday 18 May.

Architect Dr Gregor Harvie is co-founder of Designing Buildings Wiki, a free, cross-discipline knowledge base for the construction industry written by its users. It is home to more than 3,200 articles and is used by more than 10,000 people a day. Designing Buildings Wiki is supported by BSRIA, CIOB ICE, BRE, RSH+P, Buro Happold and U+I Group.

%d bloggers like this: