Heat Pumps and Heat Waves: How overheating complicates ending gas in the UK

by Dr Aaron Gillich | Associate Professor and Director of the BSRIA LSBU Net Zero Building Centre

We have entered what many are calling the decisive decade on climate action. Among the most critical decisions that the UK faces this decade is how it will eliminate carbon emissions from heat. Heat accounts for over a third of our emissions, and over 80% of our buildings are linked to the gas grid. There is no pathway to Net Zero that doesn’t include ending the use of gas as we know it in the UK.

Given the size of the UK gas grid, no single technology or energy vector can replace it. We will need a combination of clean electricity and carbon‐free gas such hydrogen or biogas, delivered by a range of enabling technologies such as heat pumps and heat networks. And of course an extremely ambitious retrofit agenda that reduces the demand for heat in the first place.

The UK is investing widely in low carbon heating innovation. That innovation is essential, but is also unlikely to include any blue‐sky breakthroughs that aren’t currently on the table. In other words, the menu of low carbon heating technology options is set, and this decisive decade will be about deciding what goes best where, and how to ensure a just and equitable heat transition.

Low-carbon heating options

Of all the low‐carbon heating options available, low carbon heat pumps are the most efficient and scalable option that is market ready and can respond to the urgency of climate change this decade. The UK has set a laudable target of installing 600,000 heat pumps per year by 2028. Many have criticized this figure as unrealistic, but I believe that the target is highly achievable, and represents a pace that is in line with past transitions such as ‘the Big Switch’ that put us on the gas grid in the first place.

This race to replace gas in the UK has been widely discussed. As have the many barriers that face heat pump deployment in the UK. What I’ve heard discussed far less are the links between heating in the winter and overheating in the summer. Over the next decade, the end of gas will present both a threat and an opportunity to improve both the winter and summer performance of our building stock.

The threat of climate change is clear. The end of gas increases this threat because gas has allowed the UK to obscure poor building performance, and poor building knowledge for so long. Cheap gas has enabled a ‘set it and forget it’ approach to many building systems, and allowed us to maintain reasonable standards of comfort in most buildings despite very poor fabric performance. The irony is that this poor winter performance actually helps reduce the risk of overheating in the summer, as the leaky and poorly insulated buildings can more easily shed excess heat. It has been widely reported that many newer, better insulated buildings actually face an increased risk of summer overheating.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss. There are many that argue heat pumps in fact require extensive fabric retrofit in order to function in most UK buildings. This is highly debatable and will be explored in detail in follow-up writings. Regardless, demand reduction and a fabric first approach is a good idea for its own sake.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss.

But reducing the heat loss in winter will likely trap heat in the summer, presenting a conflict. The UK currently experiences over 20,000 excess winter cold deaths and around 2,000 heat related deaths in summer. It was previously thought that the increased temperatures from climate change would decrease winter cold deaths, but more recent work has shown that due to the increases in extreme weather events at both ends of the spectrum, it is far more likely that winter cold deaths will remain at similar levels, and summer heat deaths will increase dramatically under climate change.

We must use the transition from gas to low carbon heating as an opportunity to better understand our buildings. Many of 600,000 heat pumps we install by 2028 will be in new build, but up to half will need to be from existing homes.

Retrofitting a heat pump is also the time to think about not only how to improve energy efficiency for the winter but how to reduce summer overheating as well. Despite much effort towards a whole‐house approach to retrofit, most work remains quite siloed. Energy efficiency and heating installations are largely in separate supply chains, and the building physics knowledge to carry out an overheating risk assessment is even less likely to sit with the same project team. Overheating is also very poorly captured by the building regulations and planning process.

A holistic approach

The last few years has seen a growing awareness of overheating risk and an emergence of increasingly easy to use assessment tools. A very small fraction of UK homes have comfort cooling. Retrofitting a comfort cooling solution typically requires costly and complex changes to distribution systems. However, there are a range of low cost options, including using local extract fans to create interzonal air movement, or using night purges and thermal mass. Blinds are also incredibly useful, but often misused in summer, and can also help reduce heat loss in winter. There are also ways to use local microclimate features such as shaded areas or the North side of the building to bring in slightly cooler air from outside and reduce peak temperatures.

Improving the air tightness and fabric performance of our buildings to address heating in the winter will change how we implement these solutions for the summer. They require not only careful thought at the design stage, but also strong communication to help end users operate them properly. Simply opening a window is unlikely to help if the outside air is warmer than inside.

A significant problem is that there are insufficient drivers to force this type of holistic approach to design, performance, and communication. It is so often said that we need stronger policies in the area of heat and retrofit, and this is no doubt true. But while we await these policies it is incumbent upon each of us in this sector to share and collaborate as widely as possible, and use whatever influence we have over a given project to encourage a fair and forward looking solution.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail. Climate change is the catalyst for an untold level of change in our lives that we are going to start to truly experience in the coming decade. Heating and overheating are coupled issues that must be solved together. We must use the end of gas as an opportunity to understand our buildings better, and implement solutions to climate change that work across seasons, or we risk trading one problem for another.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail.

“Clean Energy Revolution” puts building and product standards back on the Federal agenda

by Krystyna Dawson

The inauguration of the new President-elect, Joe Biden, marks the start of a period that could bring a substantial shift in US building-related markets. Air conditioning, heating, ventilation and controls are likely to face requirements from policy and market demand that will change dynamics in several segments.

Net Zero Emissions

With the President-elect’s Clean Energy Revolution announced during the campaign, the federal green agenda is set to make a strong comeback. President Biden signalled his intention to re-join the Paris Agreement, notably on the first day of his presidency, and outlined a national goal of net-zero emissions across the economy by 2050. Although less ambitious than the progressive Green New Deal target (net-zero emissions by 2030), with Congress now on his side he can venture putting his intention into law.

The President has promised a nearly USD 2 trillion investment plan, much of which is due to support green initiatives. He also promised to work towards achieving decarbonised electricity by 2035. Although during the campaign he was careful not to promote the ban of gas and oil fracking, his Clean Energy Revolution includes plans to improve energy efficiency in buildings and houses, and promises high investment in R&D related to zero carbon technologies to produce cutting-edge equipment for internal markets and export.

Even if not all of it might come to fruition, there is certainly a significant change of direction ahead in all industry sectors, including energy and HVAC in buildings.

HVAC Industry

During the Trump presidency, the federal government kept progress in energy efficiency standards for appliances and equipment at a low level. This has been countered by initiatives in several states, like California, Vermont, Washington, Colorado Texas and Hawaii, which have been setting their own efficiency standards for a variety of products. Federal standards nevertheless cover a wide range of HVAC products. Hence, the re-activation of ambitious federal efficiency programs will be important for industry and consumers.

California will likely increase its influence on federal decision making, not only as Kamala Harris’ home state, but because of its leading set of environmental regulations and standards. Its Title 24 Building Standards Code that sets requirements for “energy conservation, green design, construction and maintenance, fire and life safety, and accessibility” that apply to the “structural, mechanical, electrical, and plumbing systems” in buildings might provide a template for wider adoption. The experience the state is gathering on the application of a variety of solar and heat pump combinations can support the uptake of these technologies on a larger scale.

Green Agenda

With the push towards energy efficiency in buildings, technologies that support their smart operation are likely to see dynamic uptake. Currently, smart buildings represent a niche market across the US, with just some cities in the North-East, Texas or California seeing their increased emergence. They usually belong to corporations who are keen to emphasise their green credentials, aspiring to achieve high sustainability certificates through building sustainability assessments like LEED or WELL.

The impact of the federal policy change on the building HVAC and controls market will not be instant, but waiting for it to become obvious might have serious consequences for market players.  The unfolding of the green agenda by the federal government will strengthen ongoing efforts of market stakeholders and demand from consumers as environmental awareness creates favourable conditions for the shift towards efficient, environmentally friendly products.

Taking action on Climate Change

by Michelle Agha-Hossein, BSRIA Building Performance Lead

Most nations now recognise climate change as an established, perturbing fact that needs immediate attention. We can see the effects in the worsening and more frequent extremes of weather: flash floods, droughts, strong winds, heavy snow, heat waves, etc.

UK temperatures in 2019 were 1.1°C above the 1961-1990 long-term average and it was a particularly wet year across parts of central and northern England. Still fresh in the memory are storms Ciara and Dennis in February 2020 with strong winds and heavy rain that caused significant damage to homes and commercial buildings. There is growing evidence that periods of intensely strong winds and heavy rain are likely to increase in the future.

The UK is not the only country affected by climate change. Many other countries are (and will be) suffering disproportionately. The world’s leading climate scientists have warned that we might have just 12 years to keep global warming at a maximum of 1.5°C. After this point, the risk of extreme weather conditions will significantly increase. The increased frequency and intensity of extreme weather will affect all but is most likely to bring catastrophic consequences in many less economically developed countries, where food shortages and water scarcity can trigger deep social changes.

Immediate radical action is required to limit carbon emissions, and the built environment industry can play a crucial role by changing the prevailing culture.

Most building-related carbon emissions are generated from energy use in buildings. However, there are choices that building owners/operators can make and initiatives that they can undertake to lessen the related negative impact on the environment:

In brand new buildings, the most effective way for addressing emissions is reducing consumption through energy efficient design. In existing buildings, the issue can be addressed by efficient retrofitting and effective maintenance strategy. Adopting renewable energy technologies in both cases can significantly reduce building emissions.

Steps building owners and operators can take today.

There are several initiatives/activities that can help building owners/operators combat climate change:

  • Consider ‘net-zero carbon’ targets for your building: UKGBC launched its Advancing Net Zero programme in 2018 and published the ‘Net Zero Carbon Buildings: A Framework Definition’ in 2019. The framework provides the construction industry with clarity on the outcomes required for a net zero carbon building.
  • Ensure the required outcomes for a ‘net-zero carbon’ building are achieved: As advised by UKGBC in the framework definition, initiatives like BSRIA Soft Landings should be adopted in new build as well as in refurbishment projects to ensure a net zero carbon building will be achieved. The BSRIA Soft Landings framework provides a platform for project teams to understand the required outcomes for their project and ensure all decisions made during the project are based on meeting those outcomes.
  • Maintain your net zero carbon building effectively: Business-focused maintenance is a methodology developed by BSRIA that can be adopted to help building operators maintain critical assets effectively and efficiently to sustain a net zero carbon building within budget.
  • Investigate failure quickly: Is the energy bill for your building higher than it should be? Investigate the problem as soon as you can. The first and easiest step would be looking at the energy end use breakdown to see which areas are using more energy than expected. If the issue is related to the HVAC system, check the system’s setting points and monitor the indoor air temperature and relative humidity. Thermal imaging of the fabric of the building can also help to identify, thermal bridging, missing/damaged insulation and areas of excessive air leakage.
  • Promote a healthy diet among building occupants: This is a non-technical initiative that building owners/operators can adopt in their buildings. Eating less meat and gradually shifting to more plant-based foods is vital for keeping us and our planet healthy.  It is important to think about initiatives such as using signage or lunchtime talks, to educate building occupants about healthy diets and encourage them to eat more fruit and vegetables. Research has shown that adhering to health guidelines on meat consumption could cut global food-related emissions by nearly a third by 2050. Healthy diet is also supported by Fitwel and the WELL building standard.

Building owners and operators, to play their role in combating climate change, should ensure their decisions and the way they create and run their buildings contribute positively to the wellbeing of our planet and its citizens.

So, make a start today and choose the first thing you are going to assess/change in your building to help combat climate change.

To find out more about how BSRIA can help you improve building performance, visit us here.

Design Fine Tuning?

 

Julia Evans, BSRIA Chief Executive

Julia Evans, BSRIA Chief Executive

BSRIA has been involved in many recent projects including an independent assessment of the realised performance of low energy / environmentally conscious buildings.  This includes projects associated with the Technology Strategy Board’s Building Performance Evaluation (BPE) programme.

The emerging results for more than 50 non-domestic buildings have now been analysed by BSRIA to look at what works well, and when things don’t, why this is the case.  It’s always difficult to generalise based on such a diverse building stock, ownership profile, procurement route, supply chain capabilities, and operational approach, but its clear that in many of the buildings there is a significant performance gap between design intent, and realised performance.  Analysis of such data is always a challenge.  How does one attribute, for instance, any shortfall in performance between the specification, design, construction, commissioning process, and to operational issues such as sub-optimal energy management and / or changes in operating regime such as an extension in occupancy hours.

However one lesson inferred from the analysis is that with some low carbon (and / or energy) buildings one of the unintended consequences is that sometimes the building has been finely “tuned” to minimise carbon (and / or energy), and capital costs at the expense of the building’s resilience in the face of, say, changing patterns of use or internal gains.  Put simply, if a building has been engineered to reduce energy and or carbon for a particular set of operating conditions, and one way of achieving this is to simply size ventilation, and air conditioning plant in line with those conditions, what happens if say internal gains increase as a result of higher occupancy loading?  In practice it is found that some environmental designs lack the flexibility to cope with changes in business use because of limitations built into their design.  This happens with more conventional buildings, with the difference for environmental buildings being more pronounced because the design in many cases is more finely “tuned” as we move ever closer to “near zero”, or “very low” energy / carbon buildings.

BSRIA’s experience identifies many of the good practices required to ensure environmental buildings work well, and also the impact of poor practice.  Overly sensitive design is one cause of poor performance in practice.  So the question is why do some clients and their design team include a sensitivity analysis to design services and size plant so as to ensure resilience, whereas others adopt an approach best characterised by “lowest capital, highest environmental ranking, never mind about actual performance in use”?  The likely answers are complex.  Those found by others like Latham and Egan come to mind for some instances: informed clients recruit supply chains who know their business, and both understand implications of design decisions; post-occupancy-evaluationanother is the chasm which can often occur between those who specify, procure, and lease buildings, and those who occupy and manage them.  Perhaps a third is that once a building has been occupied, too seldom is thought given to how the building will actually work in the face of changes in occupant requirements.

The question for BSRIA is how we can provide a steer and guidance to our members and the industry as to how best to ensure that we build the next generation of environmentally sensitive buildings to be even more resilient in the face of likely changes those buildings will face over their lifetime.  A building which has a very low carbon and / or energy design use, but which fails to provide a productive environment in the face of foreseeable changes in operating conditions can’t really be described as “sustainable”.

This blog was written by BSRIA’s Chief Executive, Julia Evans. For more information about BPE you can visit our website or visit the TSB’s BPE pages where you can look at case studies and methods of BPE (you may need to register to access these). 

Changes to Part L – is carbon neutral possible for 2016?

282px-AD-L_Part_2A2006 was a big year for building energy efficiency, the European Energy Performance of Buildings Directive started to be implemented. This triggered a radically new Part L, requiring all new building designs to meet CO2 emissions targets. The Code for Sustainable Homes was launched that year, and the government made bold plans to require new dwellings to be carbon neutral by 2016, non-dwellings three years later.

A glide-path to zero carbon was published with interim Part L changes planned for 2010 and 2013. Come 2010, and the first round changes took place, with a 25% reduction in CO2 targets. Then the following year, the government (now a conservative-led government claiming to be the greenest ever) watered down the definition of zero carbon to exclude appliances and cooking. Fair enough, absolute zero carbon perhaps wasn’t a feasible target anyway.

Fast forward to August 2013, and the second round of changes still hasn’t happened. The government has indicated that there will be a meagre reduction of 6% in CO2 targets for dwellings, and 9% for non-dwellings, and that these will kick in in April 2014. What this says to me is that the government, at the moment, aren’t all that interested in being green. Also, that 2016 is going to be very painful for housebuilders, who will have to make a huge leap to zero carbon. This zero-carbon commitment is still in place, and was even reaffirmed in the budget announcement in March. But of course, there’s another general election before 2016….

%d bloggers like this: