A forward thinking attitude to energy management

Chris Monson, Strategic Marketing Manager of Trend

Chris Monson, Strategic Marketing Manager of Trend

Given that in parts of the world like Europe and North America some 40% of all energy used is consumed by buildings, both companies and wider society are increasingly focussing on the energy performance of their buildings, and how to improve it.

Building Energy Management Systems (or BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance. 

I’m Chris Monson, strategic marketing manager at Trend Control Systems, and I’d like to welcome you to the latest in a series of blogs where I, along with my colleagues, examine the issues affecting the building controls industry and the use of Building Energy Management Systems (BEMS).

It strikes me as somewhat bizarre that in an age where owners, managers and occupiers of commercial premises are under tremendous pressure to operate as energy efficiently as possible, so few developers recognise the long-term value of installing a fully featured BEMS at the construction stage. Such is the value and relevance of this technology, that to my mind it should be considered as important as other elements of the building services infrastructure that are designed in as a matter of course.

BEMS facilitate greater energy efficiency and the cost savings and the environmental benefits that can be experienced as a result of investment in this technology are considerable. A fully integrated solution can have up to 84 per cent of a building’s energy consuming devices directly under its control, offering greater visibility of energy use by monitoring services such as heating, ventilation, air conditioning (HVAC) and lighting.

According to the Carbon Trust 25 per cent of a building’s energy is used in lighting, and it is estimated that around a third of the energy consumed in this way in non-domestic buildings could be saved by utilising technology that automatically turns off lights when space is unoccupied. In addition, air conditioning can increase a building’s energy consumption and associated carbon emissions by up to 100 per cent, making it imperative that its use is tightly controlled.

So why isn’t the design and installation of a BEMS happening in the initial stages of a construction project? I’m afraid that the answer comes down to a combination of cost and lack of foresight. However, to fully understand why these two factors are proving so prohibitive to BEMS implementation, we need to understand a little more about the mind-set of the developer.

Developers tend to fall into two broad groups – there are those that configure buildings for others to inhabit and others who design and build premises for their own use.

When it comes to the former, the main driver is to save costs at the construction phase and little thought is given to the building’s future occupants and how they use the building. As there are no regulations stating that a BEMS must be installed, there’s a strong possibility that it won’t be. However, this lack of forward thinking leads to future occupants having to cope with inadequate visibility and control of their energy usage and, therefore, higher overheads and a larger carbon footprint.

Regarding the second group, it often comes down to the failure of owners to specify the need for a BEMS at procurement stage and make sure that they have systems in place that will maximise the energy saving potential of the building. While this type of developer will also have one eye on the cost of the project, the increased capital costs of installing BEMS is easily countered by the return on investment (ROI), with an average payback of just three and a half years.

Whichever way you look at it, the fact is that on a ROI basis early stage BEMS implementation makes sound economic sense. It can form less than one per cent of the total construction expenditure and energy savings of 10-20 per cent can be achieved when compared to controlling each aspect of a building’s infrastructure separately. The benefits don’t stop there either, as if it is incorporated with smart metering, tariff changes can be used to offer a strategic approach to energy management and control, and the data produced gives clear signposts for potential improvements.

I firmly believe that in the current business climate to construct a new build property without a comprehensive BEMS borders on foolhardiness. Organisations are faced with growing pressure to demonstrate carbon reduction policies and do all they can to lower their energy use.

Despite the controversy surrounding the introduction of the CRC Energy Efficiency Scheme, it is here to stay and is likely to extend its scope to incorporate more businesses in the future. In addition, The Climate Change Levy (CCL), Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs) also affect businesses, while compliance with certification standards such as ISO 50001 put the onus on companies to demonstrate continual improvement in this area.

It should also be remembered that building occupiers are demanding greater visibility and transparency of their energy consumption and need access to data. A failure to meet this demand could mean that prospective tenants decide to go elsewhere.

Standardisation is playing an ever more prominent role and the most significant is EN 15232, which describes methods for evaluating the influence of building automation and technical building management on the energy consumption of buildings. It enables building owners and energy users to assess the present degree of efficiency of a BEMS and provides a good overview of the benefits to be expected from a control system upgrade. The use of efficiency factors means that the expected profitability of an investment can be accurately calculated and I’m pleased that a growing number of organisations are reviewing this document and implementing some of the best practice guidance it offers.

There are those who feel that regulation is the only way to make sure that BEMS are installed at the point of initial construction, although others are reluctant to see the introduction of more onerous legislation on an already pressured construction sector. At this stage I think that regulation shouldn’t be necessary if a long-term approach to energy efficiency is factored in and the benefits of a BEMS are recognised by more developers in the initial stages of a project.

Trend_RGB SMALLFor further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report – Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Indoor Air Quality a health and wealth issue for us all

Peter Dyment, Camfil

Peter Dyment, Air Quality and Energy Consultant – Camfil Ltd.

Indoor Air Quality is a slightly vague concept to most people. When asked they tend to adopt the Goldilocks principle. Not too hot, not too cold, not too damp, not too dry. This reflects the fact that for many generations now we have had the means to control our home and work environment with comparatively little discomfort and little attention being required.

However the golden age of low cost energy and apparently limitless resources seems to be coming to an end. Sustainability is the order of the day. We are all waking up to the real value of energy and the environmental cost involved when linked to our population growth. One cost is the realisation that in cities and near busy roads in the UK there is no longer such a thing as clean fresh air.

We all breathe air to live and if it is polluted or carries airborne diseases we can fall ill as a result. Airborne hazards such as Carbon monoxide or longer term indoor threats like Radon release are sometimes a problem but the toxic fine combustion particles mainly from traffic emissions and some power stations are the major health risk to the public at large.

Technology to the rescue, if we can’t control the weather and have trouble on a national level controlling air pollution then the solution is we can at least try is to control Indoor Air Quality. Ventilation is needed into buildings to replenish used Oxygen from the air and displace the Carbon Dioxide we all exhale.

The British and European standard that gives us the Indoor Air design parameters is the rather long titled BS EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics’. This also adds the parameters of light and sound levels which can enhance or blight an inside environment.

There has been concern expressed that in the urgent quest for energy savings in large building HVAC systems engineers have been turning off or turning down plant to save energy at the expense of poor building Indoor Air Quality.

A useful European study called Healthvent has recently produced a report that attributes the levels of Burden of Disease for Indoor Air on indoor sourced pollutants and outdoor sourced pollutants respectively. The ratio shows that approximately twice as much BOD can be shown to come from outdoor sourced pollution.

To save building energy losses it has been usual practice to make building envelopes as well sealed as possible as shown by BSRIA testing. This also has the added benefit of helping stop ingress of outside sourced air pollution into the building. Healthvent identified three strategies to reduce outdoor sourced air pollution coming into the building.
1. Optimal dilution using ventilation
2. Effective Air Filtration to reduce PM2.5 by 50%
3. Source control of pollution

Effective Air Filtration was shown to be the easiest measure to implement and give the best reduction of incoming pollution with minimum effort.

Anybody can now access through the internet information on air pollution levels in their locality. There is a national monitoring network run by DEFRA and the local authorities. The Kings College website even allows Londoners to enter their post code and directly get a map of historic readings on their doorstep(example below)

pm2 5 map bsria

The recent study by Rob Beelen and his team on PM2.5, published in The Lancet, estimates that for every increase of 5 microgrammes per cubic metre (5 µg/m3) in annual exposure to fine-particle air pollution (PM2·5), the risk of dying from natural causes rises by 7%. A simple calculation indicates a routine increase in the mortality rate in central London of over 20% as a result of high levels of PM2.5 mainly from traffic emissions.

Natural causes of death in this instance can be respiratory and cardio vascular disease and recent analysis of data by the Campaign for clean air in London has highlighted that air pollution is one of the exposure categories causing all the top four male death categories and four of the top five female death categories in London i.e. Ischaemic heart diseases; Malignant neoplasm of trachea, bronchus and lung; Chronic lower respiratory diseases; and Cerebrovascular diseases.

It can be seen that the evidence is now compelling and action is now required both at a national level and on a personal level to ensure the air we all breathe is clean and healthy.  Some measures such as effective air filtration and air sealed buildings can mitigate exposure to this air pollution in the short term.

Peter Dyment is Air Quality and Energy Consultant at Camfil Ltd (BSRIA Member). Camfil Ltd also has two other excellent sites for readers: 

BSRIA is running an event looking at living with the problems of Indoor Air Quality.  To find out more and to book onto the event got the BSRIA website.

ECO scheme – carbon reduction or wealth redistribution?

Andrew Eastwell, BSRIA CEO

Andrew Eastwell, BSRIA CEO

The issue of retail energy prices is now THE political hot potato.  The invisible green taxes attached to household energy bills have suddenly become glaringly revealed and politicians of all hues are now looking at these supplements as serious vote losers.  But are they such a bright idea anyway?

The question really is about the use of hypothecated funds harvested from energy bills and used to create a kind of wealth redistribution in favour of energy-poor households.  Under this scenario there is a transfer of wealth from richer households to improve the lot of lower earning households by improving the energy signatures of their homes. The ECO scheme is not so much a carbon reduction scheme as a wealth redistribution tool.   The scheme does however have the twin benefits of deriving a relatively secure revenue stream and, by increasing the costs to “donor” households, acts as an  additional incentive for them to be efficient with energy too.

The problem, as always, lies in the continued confusion between issues associated with energy (and cost) and the release of carbon.  If carbon is the real enemy (as I believe it is) then this scheme is at best sub-optimal.  This is because although renovation of homes will undoubtedly improve the comfort of energy-poor households there is little compelling evidence to me that the costs involved (including the not insubstantial cost of administering the schemes) provide the biggest carbon reduction bang for the buck.  This is partly because improvements in dwelling performance are likely to be taken as comfort gains rather than energy saving.

We have just seen that it has been necessary to use Chinese money and what is widely regarded as a substantial central support mechanism in the fixing of a strike price for generated new nuclear electricity in order to stimulate the building of new nuclear (non carbon generating) capacity.  It is the very high up-front costs of building these facilities that is the problem.  Would it not be better to use the ECO funds as cash support as  low carbon generation building programme – nuclear, wind, tidal or whatever gives the best CO2 return per pound?

by thinkpanama

by thinkpanama

This then begs the question as to who should fund the improvement of poor dwellings.  Actually this is not so much a carbon issue as a social equalisation programme.  In all normal circumstances this has historically been met from general taxation in the form of grants and I can see no reason why this should not be the case in the future.   Perhaps, rather than distributing a £200 annual winter fuel allowance this might better be used in improving dwelling energy (not necessarily carbon) performance.  The private market for Green Deal products simply does not seem to have become excited at adding debt to the household for what are perceived as intangible gains.  Households understand cash and a more direct approach to funding Green Deal improvements through this means or indeed other mechanisms such as stamp duty may be a more efficient means of getting to the problem homes.

In summary:  Use hypothecated funds, such as ECO for the purpose they were intended  – getting carbon out of the system.  Use the money to support the most cost efficient means of doing this irrespective of mechanism for delivering this objective.

Don’t confuse wealth re-distribution with carbon saving – it distorts process and gets caught up with political weather cocking.

What happens when the lights go out?

In July we posted a blog about whether the lights will go out in the UK. This blog discussed the startling fact that the peak demand on our electricity supply network is perilously close to the supply capacity. With this comes the real risk that consumers will be exposed to outages “blackouts” and voltage dips “brownouts”. There is debate about whether this could happen, Datamonitor’s director of energy and utilities research and analysis, Neil Atkinson has commented that in practice the lights won’t go out in the UK or at least not for a long time, but that doesn’t mean we shouldn’t be worried or ignore the problem all together. He states that the Government hasn’t put sufficient contingency plans in place for the future of the UK’s supply and demand, that the Green Deal and the dwindling hopes of Nuclear power aren’t enough.

The ECA are less optimistic than Datamonitor. Bill Wright, head of energy solutions, states that the intended increasing reliance on wind power assumes that the UK as a whole will not be affected by periods of cold weather at the same time as minimum wind. This is something that has to be considered though, for if the UK were to suffer a harsh or long winter like we saw in 2012/2013 then there is a real risk that we could end up facing lights out this year or during any winter that is out of the ordinary.

Fuel poverty in England – 10 per cent, 1996 to 2011

Fuel poverty in England – 10 per cent, 1996 to 2011

There is also Ed Milliband’s pledge to freeze energy costs for customers to consider. Will this pledge speed up the process of blackouts and brownouts or it will have no impact at all? The government’s Fuel Poverty Report 2013 suggests there are already 4.8 million households in the UK that are already suffering with blackouts so Ed’s pledge won’t necessarily make any difference.

But what if it does? What will happen if the lights do go out?

BSRIA held a number of parallel workshops in June to discuss that possibility. The workshop covered the effects blackouts would have in the UK, the risks for business, the systems required, the continuity plans and what BSRIA will do. Here are some of the conclusions:

Effects of power outages

There are many potential effects that come with a long power outage. At the moment, most power outages don’t last more than an

An image of Channel 4's The Blackout

An image of Channel 4’s The Blackout

hour so there are minimal risks but the longer the outage, the more opportunity for chaos to ensue. The loss of power could lead to an increase in crime due to diminished security options e.g. alarms and security cameras leading to shops being broken into and civil disorder (a dramatization of the potential damage can be seen in Channel 4’s The Blackout). The country’s communication and transport systems would soon break down and there is a high risk to the economy due to closed businesses and lack of trade. There are few benefits to a power outage; the only redeeming effects being an increase in self-reliance and a chance for the standby power industry to shine.

Risks for business

If power outages have such an impact on society in general, then the risks to business are high as well, even more so due to the current lack of awareness in businesses. If they are unaware of the future problems, then they may well have made no contingency plan to keep their businesses running. Without a contingency plan, they face disruption to their work through either staff shortages (staff may be unable to get into work due to the breakdown of transport), or loss of process and equipment failure. If companies are dependent on computers or other technology, then they risk losing business or missing deadlines, resulting in damage to reputation and loss of profit.

Required systems and contingency plans

To help the UK prepare for the risk of future power outages, the workshop came up with some ideas for required systems and contingency plans that could help reduce the damage caused. Here are some of those. Firstly, education is key and more needs to be done to raise awareness. BSRIA is in a prime position to promote and facilitate this. Starting with the low-hanging fruit, buildings should make maximum use of natural light and ventilation to reduce base energy load. Critical areas or services need to be identified and ring-fenced to maximise the opportunity for them to run when other systems go down. There needs to be a way of controlling the amount of energy used in buildings and this is where energy services and building energy management systems could play a very important role. Incentives, such as variable tariffs from utilities, would encourage changes in consumer behaviour and more investment in smart technology. The debate over alternative fuels like shale gas needs to be had to assess its suitability and impact on the future of UK energy. Whilst standby generation may seem an easy option, and undoubtedly this will form part of the solution, it also needs to be highlighted that it cannot necessarily be relied on as a last-minute solution, for when the crunch comes, it will be in high demand and availability will plummet.

Continuity plans need to be made for a multitude of scenarios. The Government and businesses alike, need to prioritise the services

Graph taken from Bill Wright's presentation given at BSRIA Workshop

Graph taken from Bill Wright’s presentation given at BSRIA Workshop

they need most and make sure they are supported in the best possible ways. If blackouts are expected to become a regular part of our lives, then announcing them in advance will help companies to plan closures or change working hours. Companies also need to think about how their employees work; the fact is, we are highly dependent on technology like laptops and mobile phones. Without the means to recharge their batteries they quickly become redundant and we become unproductive, so companies need to think of alternative methods to keep their workforce useful – we may even have to resort to good old pen and paper!

What BSRIA could do

 From the workshops, it was suggested that BSRIA can help raise awareness and provide education on the subject. This could take a range of forms, and conferences, publications and guidance for continuity planning were just some of the activities suggested. BSRIA can also work with other organisations towards these goals to help limit the risks for everyone.

Changes to Part L – is carbon neutral possible for 2016?

282px-AD-L_Part_2A2006 was a big year for building energy efficiency, the European Energy Performance of Buildings Directive started to be implemented. This triggered a radically new Part L, requiring all new building designs to meet CO2 emissions targets. The Code for Sustainable Homes was launched that year, and the government made bold plans to require new dwellings to be carbon neutral by 2016, non-dwellings three years later.

A glide-path to zero carbon was published with interim Part L changes planned for 2010 and 2013. Come 2010, and the first round changes took place, with a 25% reduction in CO2 targets. Then the following year, the government (now a conservative-led government claiming to be the greenest ever) watered down the definition of zero carbon to exclude appliances and cooking. Fair enough, absolute zero carbon perhaps wasn’t a feasible target anyway.

Fast forward to August 2013, and the second round of changes still hasn’t happened. The government has indicated that there will be a meagre reduction of 6% in CO2 targets for dwellings, and 9% for non-dwellings, and that these will kick in in April 2014. What this says to me is that the government, at the moment, aren’t all that interested in being green. Also, that 2016 is going to be very painful for housebuilders, who will have to make a huge leap to zero carbon. This zero-carbon commitment is still in place, and was even reaffirmed in the budget announcement in March. But of course, there’s another general election before 2016….

When will the lights go out?

In the UK and some other countries the maximum demand on our supply network is perilously close to the supply capacity. In the UK we have a total supply capacity of 80 Gigawatts, and only around 67GW is available at any one time according to OFGEM director-general Alistair Buchanan. The maximum demand last winter was 60.5GW and the peak summer demand isn’t much less. It would only take a prolonged cold spell or a power station failure to drop the supply capacity below our maximum demand.

What this means in practice to an individual customer is that there is an increased risk of outages or voltage dips. It has been predicted that this could be a one in twelve chance of losing power in a year for any customer by 2015 and an increasing risk until either the supply capacity is increased or demand is cut. In the UK we are closing our coal fired power stations, decommissioning our old nuclear stations and not building new capacity fast enough to replace them. Read more about this in The Spectator.

Last week OFGEM published electricity supply and demand forecasts, showing that spare capacity has fallen as more gas-fired plants have been mothballed. It reiterated warnings that even if blackouts are avoided, power prices will rise steeply.  With the UK generation capacity margin likely to drop to 2% by 2015 the competition for supplies is likely to push prices up by 20%. Read more in The Telegraph.

Graph taken from Bill Wright's presentation given at BSRIA Workshop

Graph taken from Bill Wright’s presentation given at BSRIA Workshop

The profile of generation capacity over the next ten years is affected by political decisions such as closure of coal-fired power stations, extending the life of old nuclear stations, availability of imported gas, introduction of fracking for shale gas and planning permission for renewable energy.

Businesses need to prepare for the increased risk to protect their business continuity. At a recent BSRIA workshop, business leaders talked about how they could respond to the risks and the knock-on effects of power outages.

There are two main approaches:

  • reducing demand, including demand side management
  • adapting to a less reliable power supply with standby power.

But the effects of power outage on security of supplies, transport and even public order and crime need to be considered.  The process of planning for outages and continuity of power is part of a more general process of Business Continuity Management, for which there is a British Standard Code of Practice, BS25999.  This Standard covers all the threats to business continuity, but with the risk of power loss to a business and its supply chain and the effects of power loss on staff, customers and the public there may be a need to re-assess the risks and amend the business continuity plan.

OFGEM are hosting a Working Group to develop solutions to network capacity problems using the Low Carbon Networks Fund.  Their recent seminar presented the results of commercial and domestic demonstration projects.  The domestic demand peaks at nearly double the daytime demand between 4pm and 8pm on weekdays.  The early part of this peak coincides with the last hour of the working day so commercial demand is also high.  Various approaches to demand management are being trialled in different areas of the UK including incentives and variable pricing.

There are incentives for customers agreeing to cut their demand when local supply nears capacity.  These are set up locally with different priorities, such as the Thames Valley Vision which utilises Automated Demand Response and Business Consumer Consortia along with energy storage to reduce peak demands and avoid the need for supply network reinforcement.

In summary, the UK electricity supply network is expected to become less reliable and this will affect consumers as soon as 2015.  If consumers don’t do something they are likely to be hit by power cuts more often.  Solutions include planning for power failures, checking the reliability of standby systems, negotiating demand reduction facilities or permanently reducing demand.

BSRIA is keen to work with building operators, manufacturers, network operators, consultants and anyone involved in power continuity management.

Response to the Chancellor’s Spending Review

The Chancellor’s statement yesterday was well trailed beforehand so there were few surprises. It seems that the “greenest government ever” is in fact true blue in tooth and claw with a continuing policy of reducing leadership in central government (by decreasing funding of staff) and increasing the expectation of self-reliance by industry.

Buried in the lengthy statement that dwelt very largely on the “back to work” theme was the commissioning of HST1, the prospect of a new North South Crossrail and additional funds for flood defences. All good news for the concrete farmers.

As far as greenness was concerned, there was little said but it is clear that the message concerning the long term availability of secure energy is now well embedded. A number of key issues were put forward:

  • Firstly there was the promise of a strike price for electricity that may bring the construction of new nuclear a little nearer. Without this underpinning of future revenues the private sector is always going to be shy of the massive investments needed with very long term recovery periods.
  • Secondly there was the promise of additional investment incentive for shale gas exploration. Shale gas has the potential to fill a difficult hole in energy supply whilst the nuclear builds take place. Hardly green but a pragmatic response badly needed.

One of the difficult issues our industry is going to face is the additional loss of leadership/sponsorship and infrastructure that civil servants have given us through departments such as DCLG, BIS and DECC. As their resources have been pared to the bone, it is unsurprising that delays associated with regulation, planning reform, energy reduction programmes (Green Deal for example) are becoming ever more visible. The question is do we have the energy will and resource to fill that void? The Chancellor specifically identified other industries as the future – “synthetic biology to grapheme” but did not repeat his earlier commitment to a zero carbon built environment.

In a nutshell my take-away from this statement is one of the need for self-reliance and the need to build better “regulation” from within our community rather than expect government to lead. Either that or don a cowboy hat.

Getting life cycle costing right

Stuart Thompson

Stuart Thompson,
Senior Design Manager,
Morgan Sindall

A guest post by Stuart Thompson of Morgan Sindall 

The NRP (Norwich Research Park) Enterprise Centre project is an Exemplar Low Carbon Building, which is targeting BREEAM Outstanding and Passivhaus Certification.

The project for the University of East Anglia (UEA) is being delivered using a collaborative single point of delivery system by main contractor Morgan Sindall and its team, which includes architects Architype, civil, structural and environmental engineers BDP and Churchman Landscape Architects.

The centre has been created to achieve a 100-year design life and aspects of the development will be constructed using traditional methods. Locally sourced materials including Thetford timber, Norfolk straw and heather, chalk, lime, hemp and flint will be used and the lecture theatre will be constructed of rammed chalk while various buildings will be thatched. The development is expected to be completed in early 2014.

A key aspect of delivering the Exemplar Low Carbon Building at UEA is ensuring that the project has the lowest life cycle cost possible. The life cycle cost of a project is often discussed in construction but not usually followed through therefore it’s been fantastic to work with a client team which is happy to dedicate time and resources to evaluating this aspect of the development in such detail.

As part of the life cycle costing process, the design team met with consultants from BSRIA to consider how the building’s Passivhaus specification might affect its life cycle output. It was reassuring to know that the early analysis proved that the Passivhaus specification has life cycle benefits. You can watch a film about our workshop below:

 

Following the initial life cycle study, we followed up with a workshop that included a mixed group of various representatives from the client team. We learnt more about which issues were of particular interest to the various client representatives, such as predicted energy costs, climate change considerations, maintenance, robustness of filters and the type of finishes used. The debate did not simply focus on the initial capital costs, but also about legacy issues, robustness and replacement. We covered a full range of topics, including energy source, landscape materials, PV and roofing, lighting and floor finishes. The client maintenance team fed back to the group about their current issues and concerns too.

BSRIA's Peter Tse at the workshop

BSRIA’s Peter Tse at the workshop

What was interesting following such detailed debate was we were able to address the long term issues and this changed our initial concepts within the life cycle analysis. Our changes have made our project report totally specific and the real use and maintenance scenarios follow the life of the building. For example, how often timber windows will be re-painted, how often timber floors will be sanded and sealed and whether the LED light fittings will be able to handle the lamp life and transformer life claims. The workshop allowed the group to ensure that the life cycle analysis is extremely relevant and targeted to this specific project and we will now be able to use the information garnered during the process to shape the scheme over the next few months when detailed design commences.

This landmark project is part-funded by the European Union through the European Regional Development Fund (the largest single ERDF project in the region in the 2007-2015 funding round) in addition to funding from UEA, the Biotechnology and Biological Sciences Research Council (BBSRC) and BRE.

Look at carbon, not energy

We urgently need a clear strategy for decarbonising the grid…and here’s why.


by thinkpanama, creative commons, flickr

The world is still awash with energy.

Peak oil may have passed but peak coal has not. Nor has peak gas, and nuclear and renewables are now a rising trend.  In other words, the problem is not a shortage of energy it is too much carbon.

The trouble is, at the moment it’s hard to find a quick and easy way of taking carbon out of the primary fuel mix. So, the focus is on reducing loads, getting more out of each unit of carbon fuel, and using so-called renewables to substitute for fossil fuel.

We’re too used to having energy on tap, generated and piped from a distance. Community scale services challenge this view of life (we’ll be debating this at our briefing). Low-carbon communities attempt to use waste in order to distribute relatively low-grade heat rather than high-grade energy.

This heat is ‘free’ insofar as it recovers energy from electrical generation, household waste, or from geothermal sources. Of course, nothing is actually free. Pipe work, pumping, capital costs and so forth means that fixed costs can exceed the notional cost of the primary fuel burned to generate distributed heat.

Because of high capital costs and the long lifetime of systems (like water mains), financial planning for low-carbon communities needs to take the long view.

We  don’t know what the carbon advantage of such systems will be in the future. If there is a significant and quick (economically speaking) rise in zero carbon wind and marine generation, and carbon sequestration in coal fired plants becomes the norm, then the carbon intensity of the grid will reduce to the point where the advantage of community based systems is lost.  In short the carbon arguments for community heating systems depend crucially on the speed of decarbonisation of the grid.

This is a community-scale heating dilemma. We should have invested in CHP/DH a couple of decades ago when we had access to North sea gas – instead we face the prospect of digging up the roads yet again and forcing householders to abandon their cherished boilers. But, without a guaranteed connected load and the effective displacement of high carbon intensity grid supply it will be difficult to make community scale heating financially attractive to a commercial investor.

So, we should focus on decarbonising the grid or develop heat-sharing technologies through low-carbon communities?  These are mega questions and need a national strategy where government must lead the way. What will be the role of the building services engineer and construction teams in planning and delivery whole-community solutions?

%d bloggers like this: