Balometer Calibration: Why It Matters

Balometer Calibration

Before diving into calibration and why it matters, let’s first understand what a balometer is and why it’s essential. In the world of HVAC (Heating, Ventilation, and Air Conditioning) and indoor air quality management, precision is key. Accurate airflow measurements are crucial for maintaining a comfortable, energy-efficient environment and diagnosing system performance issues.

What are Balometers?

Balometers, commonly known as Flow Capture Hoods, play a pivotal role in balancing indoor airflows. Entrusted with the crucial task of measuring and regulating airflow within our buildings, these instruments are the go-to tools for HVAC technicians, building engineers, and indoor air quality professionals. They help ensure that air distribution systems are functioning optimally, preventing issues such as uneven heating or cooling, inadequate ventilation, and poor air quality. To maintain the accuracy and reliability of balometer readings, regular calibration is essential.

Why is calibration important?

Calibration is important because it helps ensure accurate measurements, and accurate measurements are foundational to the quality, safety and innovation of most products and services we use and rely on every day. If you look around, most of what we see was produced within tight measurement specifications assured by calibration.

When it comes to balometers, precision is paramount. These devices are responsible for gauging airflow rates with accuracy, ensuring that ventilation systems operate at their best. Inconsistent or inaccurate readings could lead to imbalanced airflow, which, in turn, affects indoor air quality, energy efficiency, and overall comfort.

Here’s why calibration is important:

  • Precise airflow measurements are crucial for efficient HVAC systems.
  • Regular calibration ensures compliance with regulations, promoting health and safety.
  • Accurate airflow measurements support energy-efficient HVAC operation.
  • Calibration serves as preventative maintenance, minimizing downtime and extending equipment lifespan.
  • Reliable data from calibrated balometers supports effective system management.

Summary

In the world of indoor air quality and building performance, Balometers are indispensable tools. They ensure that the air we breathe is clean and that our indoor spaces are comfortable and safe. But their effectiveness relies on their accuracy, which is maintained through regular calibration.

So, the next time you breathe in clean, comfortable air indoors, remember that behind the scenes, balometers and their calibration are silently working to make it all possible. In the world of HVAC, where precise airflow measurements are vital for maintaining comfort and energy efficiency, regular balometer calibration is not a luxury; it is a necessity.

In response to the growing emphasis on air quality within the built environment, BSRIA is pleased to announce an expansion of its service portfolio, with the introduction of a cutting-edge airflow Calibration Rig at its North facility in Preston, Lancashire. This is alongside the existing rig at BSRIA Bracknell, both rigs are officially endorsed by UKAS (United Kingdom Accreditation Service).

Find out more about air quality at the BSRIA Air Quality Hub.

Heat Pumps and Heat Waves: How overheating complicates ending gas in the UK

by Dr Aaron Gillich | Associate Professor and Director of the BSRIA LSBU Net Zero Building Centre

We have entered what many are calling the decisive decade on climate action. Among the most critical decisions that the UK faces this decade is how it will eliminate carbon emissions from heat. Heat accounts for over a third of our emissions, and over 80% of our buildings are linked to the gas grid. There is no pathway to Net Zero that doesn’t include ending the use of gas as we know it in the UK.

Given the size of the UK gas grid, no single technology or energy vector can replace it. We will need a combination of clean electricity and carbon‐free gas such hydrogen or biogas, delivered by a range of enabling technologies such as heat pumps and heat networks. And of course an extremely ambitious retrofit agenda that reduces the demand for heat in the first place.

The UK is investing widely in low carbon heating innovation. That innovation is essential, but is also unlikely to include any blue‐sky breakthroughs that aren’t currently on the table. In other words, the menu of low carbon heating technology options is set, and this decisive decade will be about deciding what goes best where, and how to ensure a just and equitable heat transition.

Low-carbon heating options

Of all the low‐carbon heating options available, low carbon heat pumps are the most efficient and scalable option that is market ready and can respond to the urgency of climate change this decade. The UK has set a laudable target of installing 600,000 heat pumps per year by 2028. Many have criticized this figure as unrealistic, but I believe that the target is highly achievable, and represents a pace that is in line with past transitions such as ‘the Big Switch’ that put us on the gas grid in the first place.

This race to replace gas in the UK has been widely discussed. As have the many barriers that face heat pump deployment in the UK. What I’ve heard discussed far less are the links between heating in the winter and overheating in the summer. Over the next decade, the end of gas will present both a threat and an opportunity to improve both the winter and summer performance of our building stock.

The threat of climate change is clear. The end of gas increases this threat because gas has allowed the UK to obscure poor building performance, and poor building knowledge for so long. Cheap gas has enabled a ‘set it and forget it’ approach to many building systems, and allowed us to maintain reasonable standards of comfort in most buildings despite very poor fabric performance. The irony is that this poor winter performance actually helps reduce the risk of overheating in the summer, as the leaky and poorly insulated buildings can more easily shed excess heat. It has been widely reported that many newer, better insulated buildings actually face an increased risk of summer overheating.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss. There are many that argue heat pumps in fact require extensive fabric retrofit in order to function in most UK buildings. This is highly debatable and will be explored in detail in follow-up writings. Regardless, demand reduction and a fabric first approach is a good idea for its own sake.

Replacing gas with heat pumps, or any other low carbon heat source, should be accompanied by ambitious retrofit to improve energy efficiency and reduce heat loss.

But reducing the heat loss in winter will likely trap heat in the summer, presenting a conflict. The UK currently experiences over 20,000 excess winter cold deaths and around 2,000 heat related deaths in summer. It was previously thought that the increased temperatures from climate change would decrease winter cold deaths, but more recent work has shown that due to the increases in extreme weather events at both ends of the spectrum, it is far more likely that winter cold deaths will remain at similar levels, and summer heat deaths will increase dramatically under climate change.

We must use the transition from gas to low carbon heating as an opportunity to better understand our buildings. Many of 600,000 heat pumps we install by 2028 will be in new build, but up to half will need to be from existing homes.

Retrofitting a heat pump is also the time to think about not only how to improve energy efficiency for the winter but how to reduce summer overheating as well. Despite much effort towards a whole‐house approach to retrofit, most work remains quite siloed. Energy efficiency and heating installations are largely in separate supply chains, and the building physics knowledge to carry out an overheating risk assessment is even less likely to sit with the same project team. Overheating is also very poorly captured by the building regulations and planning process.

A holistic approach

The last few years has seen a growing awareness of overheating risk and an emergence of increasingly easy to use assessment tools. A very small fraction of UK homes have comfort cooling. Retrofitting a comfort cooling solution typically requires costly and complex changes to distribution systems. However, there are a range of low cost options, including using local extract fans to create interzonal air movement, or using night purges and thermal mass. Blinds are also incredibly useful, but often misused in summer, and can also help reduce heat loss in winter. There are also ways to use local microclimate features such as shaded areas or the North side of the building to bring in slightly cooler air from outside and reduce peak temperatures.

Improving the air tightness and fabric performance of our buildings to address heating in the winter will change how we implement these solutions for the summer. They require not only careful thought at the design stage, but also strong communication to help end users operate them properly. Simply opening a window is unlikely to help if the outside air is warmer than inside.

A significant problem is that there are insufficient drivers to force this type of holistic approach to design, performance, and communication. It is so often said that we need stronger policies in the area of heat and retrofit, and this is no doubt true. But while we await these policies it is incumbent upon each of us in this sector to share and collaborate as widely as possible, and use whatever influence we have over a given project to encourage a fair and forward looking solution.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail. Climate change is the catalyst for an untold level of change in our lives that we are going to start to truly experience in the coming decade. Heating and overheating are coupled issues that must be solved together. We must use the end of gas as an opportunity to understand our buildings better, and implement solutions to climate change that work across seasons, or we risk trading one problem for another.

In summary, the availability of cheap gas has allowed us to escape having to understand our buildings in much detail.

UK heat pump market has weathered Covid-19 challenges. Coherent policy support is now needed to unlock its full potential.

by Krystyna Dawson, BSRIA Commercial Director

BSRIA has released its latest global heat pump market reports, including the eagerly awaited report on the status of the UK heat pump market.

Last spring, deep uncertainty set in across the markets as lockdowns in many countries disrupted trading. There was fear within the heat pump industry of a significant slowdown in what had previously shown dynamic market growth.

Indeed, the global heat pump market posted a decrease of 1.5% in 2020. However, performance varied across regions: with 12% market growth year-on-year, Europe has been at the forefront; the UK also saw positive development with heat pump sales increasing by 9.2% in 2020.  

Green Homes Grant

UK heat pump market sales were helped by the RHI and the Green Homes Grant scheme in 2020. The latter has proven to be important for the market, which has seen sustained growth in the refurbishment segment despite the number of installations in new buildings stalling due to the lower level of new home completions.

However, heat pump installation still represents a major challenge in existing homes. The ongoing review of Part L and Part F of building regulations offer hope that refurbishments in homes and buildings will be conceived with low carbon heating in mind, but the review’s outcomes are yet to become a legal requirement.

Moreover, even though there is market potential for a higher number of heat pump installations in existing homes, the government has, so far, been unable to unlock it. The Saturday 27th March announcement of the closing of the Green Home Grant scheme to new applicants by 31st March 2021 has been yet another example of the disappointing approach to deployment of energy efficiency measures and heat pumps.

UK heat pump market: Achieving a net zero carbon economy

Heat pumps are among the technologies the government has identified as key to achieving a net zero carbon economy by 2050. The Prime Minister’s 10 Point Plan for the UK Green Industrial Revolution includes the target to deploy 600,000 heat pumps a year by 2028.

The UK saw around 37,000 heat pumps sold in 2020. The extra £300 million in funding, moved from the soon-to-be defunct Green Homes Grant to local authorities to enable energy efficiency upgrades for lower income households, may bring additional installations. But even if all 30,000 applicable homes were fitted with heat pumps, the numbers are insufficient to sustain hope of reaching the PM’s ambitious target.. There is potential for more heat pump installations in existing homes, and the interest in heat pumps is growing among home and building owners. The heat pump industry is also working at full speed to deliver innovative products that respond to end-user expectations and environmental challenges.

HVAC industry skills gap

However, unless demand from existing homes and buildings is unlocked at full scale, and until real attention is paid to the sufficient availability of a skilled workforce, the heat pump market will struggle to see the acceleration needed to reach the government target and make a difference in the level of carbon emissions from UK homes and buildings.

Coherent policy and financial support are needed to match the readiness to act on both industry and consumer sides. Integration of heat pumps in a home or a commercial building requires a holistic approach where design and affordability should be considered to deliver carbon savings, cost savings and a healthy and comfortable environment.

“Clean Energy Revolution” puts building and product standards back on the Federal agenda

by Krystyna Dawson

The inauguration of the new President-elect, Joe Biden, marks the start of a period that could bring a substantial shift in US building-related markets. Air conditioning, heating, ventilation and controls are likely to face requirements from policy and market demand that will change dynamics in several segments.

Net Zero Emissions

With the President-elect’s Clean Energy Revolution announced during the campaign, the federal green agenda is set to make a strong comeback. President Biden signalled his intention to re-join the Paris Agreement, notably on the first day of his presidency, and outlined a national goal of net-zero emissions across the economy by 2050. Although less ambitious than the progressive Green New Deal target (net-zero emissions by 2030), with Congress now on his side he can venture putting his intention into law.

The President has promised a nearly USD 2 trillion investment plan, much of which is due to support green initiatives. He also promised to work towards achieving decarbonised electricity by 2035. Although during the campaign he was careful not to promote the ban of gas and oil fracking, his Clean Energy Revolution includes plans to improve energy efficiency in buildings and houses, and promises high investment in R&D related to zero carbon technologies to produce cutting-edge equipment for internal markets and export.

Even if not all of it might come to fruition, there is certainly a significant change of direction ahead in all industry sectors, including energy and HVAC in buildings.

HVAC Industry

During the Trump presidency, the federal government kept progress in energy efficiency standards for appliances and equipment at a low level. This has been countered by initiatives in several states, like California, Vermont, Washington, Colorado Texas and Hawaii, which have been setting their own efficiency standards for a variety of products. Federal standards nevertheless cover a wide range of HVAC products. Hence, the re-activation of ambitious federal efficiency programs will be important for industry and consumers.

California will likely increase its influence on federal decision making, not only as Kamala Harris’ home state, but because of its leading set of environmental regulations and standards. Its Title 24 Building Standards Code that sets requirements for “energy conservation, green design, construction and maintenance, fire and life safety, and accessibility” that apply to the “structural, mechanical, electrical, and plumbing systems” in buildings might provide a template for wider adoption. The experience the state is gathering on the application of a variety of solar and heat pump combinations can support the uptake of these technologies on a larger scale.

Green Agenda

With the push towards energy efficiency in buildings, technologies that support their smart operation are likely to see dynamic uptake. Currently, smart buildings represent a niche market across the US, with just some cities in the North-East, Texas or California seeing their increased emergence. They usually belong to corporations who are keen to emphasise their green credentials, aspiring to achieve high sustainability certificates through building sustainability assessments like LEED or WELL.

The impact of the federal policy change on the building HVAC and controls market will not be instant, but waiting for it to become obvious might have serious consequences for market players.  The unfolding of the green agenda by the federal government will strengthen ongoing efforts of market stakeholders and demand from consumers as environmental awareness creates favourable conditions for the shift towards efficient, environmentally friendly products.

The wellbeing and environmental effects of agile working

by David Bleicher, BSRIA Publications Manager

How many times in the last few months have you started a sentence with “When things get back to normal…”? For those of us whose work mostly involves tapping keys on a keyboard, “normal” implies commuting to an office building five days a week and staying there for eight or more hours a day.

When lockdown restrictions were imposed, things that were previously unthinkable, such as working from home every day, conducting all our meetings by video call, and not having easy access to a printer, became “the new normal”.

One thing the pandemic has taught us is that changes to our work habits are possible – we don’t have to do things the way we’ve always done them. Since lockdown, agile working has been high on companies’ agendas; but agile working has a broader scope than flexible working. It is defined as “bringing people, processes, connectivity and technology, time and place together to find the most appropriate and effective way of working to carry out a particular task.”

Working from home with a cat

The triple bottom line

Agile working is indeed about much more than changing people’s working hours and locations. It’s about how people work – becoming focused on the outcome rather than the process. It’s about making the best use of technology to achieve those outcomes and it’s also about reconfiguring workplaces to better suit the new ways of working. But, when considering these outcomes, we should be looking further than the financial bottom line. The term triple bottom line is a framework that also brings social and environmental aspects into consideration.

How, when and where people work has a major impact on their wellbeing. The past few months have served as an unintentional experiment in the wellbeing effects of mass home working. Some people are less stressed and more productive working from home, providing they have regular contact with their colleagues. Other people – particularly those who don’t have a dedicated home working space – returned to their offices as soon as it was safe to do so. It depends on the individual’s preferences, personal circumstances and the nature of the work they do.

On the face of it, it would seem that increased working from home or from local coworking spaces would be a win-win for the environment. Less commuting means fewer CO2 emissions and less urban air pollution. But a study by global consulting firm and BSRIA member, WSP, found that year-round home working could result in an overall increase in CO2 emissions.

In short, it reduces office air conditioning energy use in the summer, but greatly increases home heating energy use in the winter – more than offsetting carbon savings from reduced commuting. Perhaps what this highlights most is just how inefficient the UK’s housing stock is. If we all lived in low energy homes with good level insulation and electric heat pumps, the equation would be very different. Perhaps a flexible solution allowing home working in summer and promoting office working in winter would be best from an environmental perspective.

A possible long-term effect of increased home working is that some people may move further away from their offices. For example, someone might choose to swap a five-days-a-week 20 km commute for a one-day-a-week 100 km commute. If that is also a move to a more suburban or rural location with more scattered development, less public transport and fewer amenities within walking distance, then (for that individual at least) there’ll be an increased carbon footprint. Not very agile.

Impact of technology

There’s another aspect that may not yet come high up in public awareness. Remote working is dependent on technology – in particular, the video calls that so many of us have become adept at over the past few months. All this processing burns up energy. The effect on home and office electricity bills may be negligible because the processing is done in the cloud. This isn’t some imaginary, nebulous place. The cloud is really a network of data centres around the world, churning data at lightning speed and, despite ongoing efforts, still generating a whole lot of CO2 emissions in the process. Videoconferencing definitely makes sense from both an economic and environmental perspective when it reduces the need for business travel, but if those people would “normally” be working in the same building, isn’t it just adding to global CO2 emissions?

We don’t yet know what “the new normal” is going to look like. Undoubtedly, we’re going to see more remote working, but responsible employers should weigh up the pros and cons economically, environmentally and socially. Terminating the lease on an office building may seem like a sensible cost saving, but can a workforce really be productive when they never meet face-to-face? Does an activity that seemingly reduces CO2 emissions actually just increase emissions elsewhere? Any agile working solution must take all of these things into account, and not attempt a one-size-fits-all approach to productivity, environmental good practice and employee wellbeing.

For more information on how BSRIA can support your business with energy advice and related services, visit us here: BSRIA Energy Advice.

What makes a good PICV?

by Andrew Pender, National Sales Manager at FloControl Ltd.

Over the last 5 years, PICVs have been widely accepted as the best method of terminal control in variable flow systems due to their energy saving potential.  The surge in popularity has led to an influx of products with varying designs, features and functionality.  This article reviews some of the mechanical PICV design elements and how they can impact on the PICV’s performance in an applicational context.

Where do we start?

To help specifiers and project engineers assess which PICV is best suited for an application, the BSRIA BTS1/2019 standard has been developed to provide a consistent test method for PICV manufacturer’s products to be benchmarked against.

Manufacturers should be able to provide test results in line with this technical standard which covers:

  • measured flow vs nominal flow
  • pressure independency or flow limitation
  • control characteristics, both linear and equal percentage
  • seat leakage test

Repeatability & Accuracy are central to the tests and they are key to good temperature control and realising the full energy saving potential of a PICV installation.

An accurate PICV means the measured results will be equal or very close to the manufacturer’s published nominal flow rate each time it is measured, known as low hysteresis.

Accuracy has a positive impact on a building’s energy consumption.  “Measured over time, a 1% increase in the accuracy of a PICV can result in a reduction of around 0.5% in the building’s overall hydronic energy consumption” (FlowCon International).

Valve accuracy is driven by the design, manufacturing process and material used for the internals of the valve.

  • The design of the PICV should allow for Full Stroke Modulating Control at all flow settings without any stroke limitation.  The flow setting and temperature control components should operate independently.  Some PICV designs use the stroke of the actuator stem to set the flow rate resulting in limited stroke and control.  This can cause issues at low flow rates whereby the PICV effectively becomes on/off irrespective of actuator selection.  
  • The manufacturing process and the component materials also contribute to accuracy. For example, injection-moulded, glass-reinforced composite materials cope better with water conditions that valves can be exposed to.  They also have less material shrinkage than other materials, delivering higher accuracy than valves that use alloy components.

What else should be considered?

The importance of accuracy and repeatability are paramount when selecting a PICV however there are other factors that should be considered:

  • Wide flow rate range – including low flow rates for heating applications, ideally covered by a small number of valves.
  • Setting the flow rate – setting the PICV can influence the accuracy. There are various scales used including set points related to flow rates and percentages. PICVs with very detailed scales with small increments between set points are more difficult to set accurately, leading to higher tolerances than the BSRIA standard recommended + 10%.
  • Wide ΔP Range – low start up pressure. To operate satisfactorily, the PICV requires a minimum pressure differential to overcome the initial spring resistance within the PICV, enabling the spring to move and take control. Care should be taken to ensure the minimum pressure differential is as low as possible to maximise the energy saving potential of the system.  The maximum DP should also be considered to ensure the PICV operates effectively under part load conditions.
  • Dirt tolerance – the Valve Control Opening Area [A] on all PICVs, irrespective of the manufacturer, is identical for each flow rate. The shape of the Control Area can be different depending on the valve design. A Rectangular flow aperture is more tolerant than an Annular flow aperture. Debris will pass through the rectangular aperture more easily.
  • Removable inserts – deliver the greatest flexibility and serviceability.  Products can be easily serviced in line without disruption. This is especially of value when water quality is poor or when flow requirements change due to changes in space usage.  Inserts can also be removed during flushing.  Valve bodies can be installed with blank caps eliminating the risk of damaging or contaminating the PICV element, whilst having a full-bore flushing capacity.
  • Installation – PICVs in general have no installation restrictions however in line with BSRIA BG29/20, it is recommended that PICVs should be installed in the return branch as small bore PICVs will have a high resistance which will hinder the flushing velocity during the forward flushing of terminal units.

Making the right choice

There are many aspects for specifiers and project engineers to consider when selecting the right PICV for an application.  The BTS1/2019 standard provides an excellent benchmark, but the individual designs also need to be carefully considered.  A correctly selected PICV will ultimately lead to a more comfortable indoor climate with better control of the space heating and cooling as well as potentially reducing the pump energy consumption in a building by up to 35%.

This post was authored by Andrew Pender, National Sales Manager at FloControl Ltd. All views expressed are those of the author. If you belong to a BSRIA Member company and wish to contribute to the BSRIA Blog, please contact marketing@bsria.co.uk

Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

District Heating and Cooling and Heat Interface Units are still closely tied markets

Socrates Christidis
BSRIA Research Manager – Heating and Renewables

District Heating and Cooling networks have witnessed significant growth in many European countries in the last five years and this is set to continue in the coming decade. Significant European policy initiatives, such as the Green Deal, country government promotions, alongside increased public and private investment are supporting new business models such as utilities selling heat as a service and not as a commodity, which will drive the market forward.

BSRIA research indicates that the share of heat pumps and Energy-from-Waste in district heating and cooling systems is increasing. This trend is in line with the development of the concept of 5th generation heat networks. These are demand driven and low-temperature networks, using locally available low-grade waste heat (A/C, datacentres, underground stations, etc.), low temperature renewable energy in bodies of water and solar energy instead of a central energy centre. In principle, such systems favour the use of substations at building level, but no heat interface units at the dwelling level, as these are likely to be replaced by heat pumps.

Currently industrial boilers and CHPs remain the main source of heating in District Heating networks. For instance, 85% of planned heat networks in the UK, will have a CHP as the primary source of heating and 50% will have a gas boiler as a backup. The remaining 15% will use geothermal, ground source or water source heat pumps.

Thus, in the short-term Heat Interface Units (HIUs) will remain the link between the apartment and the network.

Going forward, reducing demand for heating and increasing need for hot water and cooling imply that the market will see the uptake of:

  • All-in-one units (heating or cooling and hot water)
  • Cooling units
  • Hybrid units, with integrated electric water heating
Graph showing European HIUs market growth

The main threats for HIUs market progress are the currently lack of consistent quality of installation and COVID-19.

Heat interface units have a major impact on the overall performance of a heat network and successful operation and performance both depend on correct system design and specification, followed by competent installation and maintenance. This has been problematic, with systems inadequately designed and quite often oversized. We see some signs of improvements as the industry becomes more sensitised towards good quality district heating. Documentation is improving as well as codes of practice, testing of HIUs, and further testing on site; however, under tight budgets the emphasis is often for the lowest cost, specification compliant technology. Testing the unit in a lab and then onsite is optional but critical to ensure performance.

Closing of construction sites was the main impact of the Coronavirus pandemic, including lack of cash flow, as the invoicing is done when products are delivered onsite. The industry has also witnessed a lack of new orders from April to June, with some signs of recovery observed just after. Overall, the European sales in the first 6 months of 2020 were between 15% and 30% down, depending on country, when compared to the 6 first months of 2019.

Going forwards, new construction presents a slightly positive picture. During COVID-19 there has been delays but not cancellations in planning permissions; delays as sites operate under social distancing guidelines and some delays for new investment to come through. However, governments and authorities are still eager to go ahead with programs and incentives, with renewed emphasis on the environmental agenda.

Looking at estimations for completions of flats before and after the outbreak, the recovery is likely to accelerate in 2022, and the market is unlikely to recover before. The end of financial support schemes by governments (VAT deferral, loan schemes or furlough) is likely to have a negative impact on many businesses, including contractors. Indications are, that new build and residential sales will be hit harder than commercial ones. Southern Europe is also likely to struggle more, although recession is expected across most of European countries.

Taking all this into account, BSRIA sees the numbers of heat interface units growing steadily but at a single digit compound annual growth rate of just over 4% on a Pan-European basis. The market will become more diverse and will look for more flexible options to cater for high-end, electricity-only heating, mixed-used and communal areas.

To find out more about BSRIA’s District Energy and Heat Interface unit market studies contact us at:

2019 China Heating Market Dynamics

China has by far the largest heating market in the world in terms of units manufactured and sold. In 2019, a little over 40,000,000 units, including, boilers, water heaters and heat pumps, were sold in China. The country also has the world’s largest network of pipes supplying gas for heating systems. China has been developing its gas network very actively over the last years and consequently the country’s total building area covered by gas pipework has more than doubled in the past 15 years. Growing accessibility of gas across the country, coupled with government’s efforts to tackle air pollution and green house gas emissions underlines the potential for continuous growth of heating in the country. To give it some perspective, the sales of gas domestic boilers have grown 10-fold in the last 11 years.

 

boilers6

Source:  BSRIA

 

Today, the heating market is shaped by three areas of sales impact, each having its own dynamic:

  1. Government policy represented mainly by “Coal to gas” and “Coal to electricity” projects

Coupled with expansion of the gas network, stronger governance, better product quality and more competitive gas prices this policy is continuing to strongly impact sales of gas fuelled products, in line with the Chinese government’s 5-year plan (2016-2020 – 3th 5-year plan.

The policy has also a strong impact on the progression of the heat pump market, mainly for water heating, although growth of heat pumps for both, heating and hot water provision has also grown in the recent years.

Compared with the vigorous “coal-to-gas” and “coal-to-electricity” projects in the domestic market, commercial boilers have higher requirements for large-scale, stable and constant fuel supply and corresponding infrastructure construction, which makes the transition from coal to cleaner energy more difficult. Nevertheless, a moderate growth was also seen in the commercial gas boiler and commercial heat pump markets.

  1. Regular project market (new build)

New build is currently driving sales of heating products thanks to the existing pre-decoration policy, which is currently supported by local government to deliver fully fitted buildings, with operational heating systems installed.

The importance of the new build market is significant in China as it delivered sales of some 1.5 million gas boilers and over 900 thousand heat pumps to the new residential dwellings.

  1. Retail market (replacement and high-end new build)

Retail distribution chain has a strong impact on sales of all heating products as it is the most common place of provision of products for clients. Those replacing old, inefficient appliances or willing to install the appliances of their own choice in the newly acquired dwellings source them in retail shops. This market is very sensitive to economic situation and changes quickly depending on the consumer confidence level. It represents a large opportunity as there are millions of heating systems in China, which are older than 10 years – the time after which replacement is normally considered. Similarly, in many new houses owners opt to have better quality heat systems than those installed by the contractor as part of the pre-decoration policy.

With regards to district heating, the market has accelerated in recent years as policies to deal with air quality have been promoted and investments have been made. There are currently more than 400 projects underway and nearly 100 enterprises engaged. The industry generally believes that the development of smart district heating projects opens attractive strategic opportunities.

However, China is in a period of low economic growth and dealing with the aftermath of COVID-19 implications. Both will have an impact on the performance of the country’s heating product sales this year.

BSRIA is preparing the updated view on 2020 market performance and short term forecast for boilers and heat pump markets that will be available in September 2020.


By Socrates Christidis, Research Manager Heating & Renewables,

BSRIA, World Wide Market Intelligence


Notes to editors:
For further information, please contact:

 

Thoughts on the COVID-19 impact on China’s HVAC industry

by Martin Li, BSRIA APAC

Some economic background data

After carrying out many conservative policies like Complete City Lock-down, China has started to recover from the COVID-19 related downturn. The economy has been opening since late March 2020 and is in wider re-opening stage by May 2020.

In the first two months of 2020, China’s total import and export value of goods trade reached 4.12 trillion RMB, a decrease of 9.6% comparing with the same period last year, with export, experiencing a particularly bad fall by 15.9%.

According to the latest statistics, both Manufacturing and non-Manufacturing PMIs slid down to the range far below 50% in February 2020, with 35.7% for manufacturing sector and 29.6% for non-manufacturing one. Manufacturing sector has been hit hard, and the central government is mobilizing companies returning to production to catch up with delays as soon as possible.

Construction industry represents a more mixed picture. According to Xinhua Finance, the total sales of residential housing by Top 100 developers dropped by 20.7% under the influence of the pandemic, but 24 among them, have achieved over 10 billion RMB sales, indicating that the competitive environment is going to become more concentrated in the coming months.. Another set of data from KERUIRC in its research on 27 Key Cities showed a decline of sales by 80%, and half of the cities in the sample pool supplied no new housing in February 2020.

2020 Prospects for China’s HVAC industry

Different impact in residential and commercial segment

Both global and domestic demand have fallen significantly in the first quarter of the year. Under severe lockdown rules, sales, installation, or integration work were not allowed and according to CICC, in January 2020, the entire domestic and overseas sales of AC fell by 34% and 28% respectively. The situation worsened in February and March, but the visible recovery has been noted in May.

Similar situation has been recorded in the domestic boiler market where during the first quarter 2020, sales remained heavily subdued with slow recovery noted from the April. Overall Chinese domestic heating sector shrank by 60% in the first quarter of the year.

HVAC products, like RAC-CAC or wall-hung boilers, belong to the “must have” category of products, hence market demand for those has mostly shifted and is expected to “make up”, in the coming months, for lost sales in the first quarter of the year. The whole year performance is expected to come close to the 2019’s sales levels, with the caveat, that there will be no second wave of the virus outbreak.

Commercial AC and Commercial/Industrial heating sectors have not been so severely affected by the pandemic, with many companies reporting successful achievement of their Q1 budget.

Strategic changes related to the offering and distribution business models

This pandemic seems to have forced transformation of conventional business activities. Owners of physical stores and off-line distributors have become acutely aware of the weakness of their business model. Many are now in the process of moving their operation to on-line platforms, which is likely to also accelerate their embrace of the global e-commerce.

From a product mix point of view, companies have become more aware of the importance of the variety of product offer and disadvantages of concentrating on sales of one product family type. An integrated shop/store, selling the idea of Comfort Home with a bunch of products delivering what is ultimately needed by the end user is expected to become a mainstream ideology. Integrating sales of Water, Air, Heating, Automation and Smart systems is where the industrial consensus is heading after the pandemic.

In summary, assuming the outbreak of COVID-19 can be contained and will not reappear in China, its impact on sales levels will possibly be limited in the overall year perspective. However, when debt, assets holding costs and opportunity costs will be considered, HVAC business owners will be looking for more options to mitigate unforeseeable risks in the future. In the short term some distribution and offering trends that have started to emerge before the pandemic will accelerate. In the longer-term higher market integration is likely.

Note to editors:

For more information about BSRIA’s research, please contact:

%d