The hidden menace of corrosion in heating and cooling systems

Written by Reginald Brown, Senior Consultant at BSRIA

Written by Reginald Brown, Senior Consultant at BSRIA

Most buildings services engineers will have come across a heating or cooling system that has not received water treatment and still appears to function perfectly and another that has apparently been treated but experienced serious corrosion related failures. Why should one be vulnerable and the other not? The answer is that most common metals are subject to corrosion but the rate of corrosion and risk of failure depends on a variety of factors including the chemical and microbiological environment, temperature, flow rate and not least the thickness of the metal.

In many respects water is the ideal heat transfer medium for building services. It has a reasonably high specific heat, is liquid over a convenient temperature range and is non-flammable, non-toxic and freely available. The downside is that water is an electrolyte that facilitates corrosion in metallic pipework and components. One might think that the obvious solution is to use plastic pipework but this can actually increase the risk of corrosion of the corrodible components that remain.In a steel pipework system, the dissolved oxygen in the system water will rapidly be used up as it reacts with the large area of corrodible surface but the loss of metal thickness should be insignificant. In a plastic pipework system there are few corrodible components so oxygen concentration will remain higher for longer and the corrodible materials will continue to corrode at a high rate. This means that almost all water based heating and cooling systems should have some form of water treatment to control corrosion, and it may be even more important in plastic pipework systems.

The usual construction programme for large building projects involves installation and pressure testing of pipework followed by pre-commission cleaning and commissioning several months later. During the gap between pressure testing and pre-commission cleaning the system may be both stagnant and still contaminated with manufacturing and construction residues. This is an ideal environment for the development of biofilm and corrosion.

In traditional steel pipe systems (using BS 1387:1985 or BS EN 10255:2004 medium or heavy grade pipe) this is not too much of a problem. The relatively thick pipe (at least 3.2 mm for 1 inch nominal bore and larger) can tolerate the initial corrosion due to the oxygen in the fill water and biofilm development during subsequent stagnation conditions. Provided the pre-commissioning cleaning is carried out effectively, ideally with a biocide wash prior to chemical cleaning, there should be minimal impact on the lifetime of the system.

Thin wall steel pipes and steel panel radiators may not be so fortunate. The thickness of 25 mm nominal bore thin wall carbon steel pipe is only 1.5 mm while a typical steel panel radiator is only 1.3 mm thick. If the initial corrosion was spread uniformly across the metal surface it would not be problem but what tends to happen is that small patches of the surface become anodic relative to their surroundings and are preferentially corroded leading to rapid localised pitting. If dissolved oxygen levels persist or are replenished due air ingress, continuing additions of fresh water or permeation through non-metallic materials then the pitting can progress to perforation. Components that should last 25 years can be perforated in a few months. This is one of the most frequent types of corrosion failure reported to BSRIA and can result in expensive remedial works even before the building is occupied.

Water treatment chemicals work by inhibiting the corrosion process, either by coating the surface of the metal (anodic inhibitors) or otherwise blocking the corrosion reactions (cathodic inhibitors). However, inhibitors are not the solution to poor closed system design or operational deficiencies and certainly won’t work to best effect in a dirty system i.e. one with a high level of suspended solids and/or biological contamination. Also, the system operation must allow the inhibitors and other water treatment chemical to be maintained at an effective concentration and circulated throughout the year.

In summary, the factors necessary to avoid pitting corrosion of steel components in closed systems are:

  1. Minimise the delay between first fill and pre-commission cleaning.
  2. Carry out effective pre-commission cleaning of the pipework system.
  3. Establish, monitor and maintain effective water treatment and water quality as soon as possible in the life of the system.
  4. Circulate water throughout the system on a daily basis to avoid stagnation.
  5. Avoid ingress of oxygen from inadequate pressurisation or excessive fresh water additions.
What happens in the first few weeks of the system can prevent pipe corrosion like this over the next 25 years

What happens in the first few weeks of the system can prevent pipe corrosion like this over the next 25 years

What happens in the first few weeks of the life of the system will influence its fate over the next 25 years. You can’t easily see what is going on inside a pipe but get it wrong and you could be looking at major remedial works in a tenth of that time.

A detailed discussion of corrosion and the use of inhibitors and other chemicals is contained in BSRIA BG50 Water Treatment for Closed Heating and Cooling Systems. Pre-commissioning cleaning is described in BSRIA BG29 Pre-commission cleaning of pipework systems. Guidance on the monitoring of water quality in closed systems is contained in these documents and BS 8552 Sampling and monitoring of water from building services closed systems – Code of practice.

BSRIA also runs a Pre-commission cleaning of pipework systems training course and provides independent failure investigations for all types of building plant and systems including pipweork corrosion.

This article was first published in Modern Building Services.

Refrigeration Part 1 – Choosing the right refrigerant

Salim Deramchi, Senior Building Services Engineer at BSRIA

Salim Deramchi, Senior Building Services Engineer at BSRIA

Refrigerants are a key component for air conditioning and refrigeration. Since the 19th century there have been many refrigerants developed and used but none of them has as yet become the industry standard.

As an industry we should not consider reducing F-Gas emissions as just complying with legislation to meet government set targets, but reducing them will also have a positive effect on operating costs.  We can make cost savings through efficient operation and we can also help enhance market reputation by being more environmentally friendly.

To have a good understanding of this we need to look at:

  • Available refrigerant types
  • Our selection criteria
  • How we evaluate the available refrigerants

Traditionally commercial businesses have been using R12, a CFC, and R502a CFC/HCFC. In addressing the ozone depletion problem, most manufacturers have adopted either R404A a HFC blend or R134a. However, both are potent greenhouse gases (Nicholas Cox).

So the industry needs to look at future solutions which might be natural refrigerants, although some design change might be required on the equipment used. The following refrigerant replacements all require system and operational changes to current practice:

20140213_132647_resizedIsobutane (R600A) is a hydrocarbon , and hence is flammable. The thermodynamic properties that are very similar to those of R134a. Isobutane presents other advantages, such as its compatibility with mineral oil and better energy efficiency and cheaper than that of R134a. The use of isobutane requires minimal design changes, such as the relocation of potential ignition sources outside of the refrigerated compartment. Operational changes will also be required.

Propoane (R290). With a boiling point of -42C, propane is an excellent alternative to R22 as it requires similar working pressures. An added advantage is that except for added safety measures because of its flammability, virtually no design change is required in systems when switching from R22 to propane. The combination of its good thermodynamic and thermophysical properties yields systems that are at least as energy efficient as those working with R22. The use of propane is increasing in countries where regulations allow it.

Ammonia (R171). Ammonia has been continuously used throughout modern refrigeration history. Despite its numerous drawbacks, it is toxic and flammable in concentrations between 15.5% and 28% in air. It is not compatible with copper, thus requiring other materials of construction. Its thermodynamic and thermophysical properties also yield very efficient refrigeration systems. Because of its acute toxicity, stringent regulations apply for ammonia systems, which require close monitoring and highly skilled engineers and technicians.

20140213_132339_resizedCarbon dioxide (CO2) is not a new refrigerant. Rather, it was ‘rediscovered’ in the early 90’s. The use of carbon dioxide as a refrigerant has gone back well over a century. Its application was abandoned in the mid-50s, with the widespread use of the CFC refrigerants, which were more efficient, more stable and safer. Due to its low environmental impact, low toxicity and non-flammability, CO2 is now regaining popularity from refrigeration system designers when an alternative to fluorocarbons is being sought. (Ahmed Bensafi and Bernard Thonon)

So there are alternatives on the market and technology development is tackling this issue it is now up to the designers and operators to specify something new to move the industry forward. With F-Gas regulation 2 coming we need to get ahead of the game.

We have tried to cover some of the available refrigerants seen in the market and we will be evaluating and discussing the selection criteria in our future blogs.

%d