Introducing….BG71/2017 Building Services Reports

This blog was written by Richard Tudor, Technical Director at WSP

Anyone involved in technical work can appreciate the challenges presented when trying to communicate their ideas, information, proposals or recommendations to others.

To be effective an engineer must develop skills in the preparation of all types of communication and the ability to write clear, concise reports is an asset for any designer.

A designer must be able to translate engineering solutions and design intent into an understandable written form in such a way that the reader, often non-technical or with little building services knowledge, can understand. The need to communicate with clients and other professionals effectively is essential.

A report is a form of communication that is written for a specific purpose and aimed at a particular audience. There are various types of reports utilised in the industry which are used for different purposes that can range from communicating design to expert witness reporting.

BG71/2017 Building Services Reports explores various types of reports with the aim to:

  • provide guidance in promoting consistency through common report definition
  • provide an aide-mémoire by outlining report considerations
  • improve efficiency in report preparation
  • help develop technical writing skills

The report types covered include feasibility, thermal modelling, design stage, technical due diligence and expert witness.

For each type of report covered, the guide aims to outline what that report should achieve, in addition to highlighting key points and guidance to assist the reader in developing their own particular report structure. The appendices propose considerations, levels of information and typical headings for some of the reports with the aim to provide an aide-mémoire to further assist the reader. The considerations are not exhaustive and the final content of reports, together with headings, will vary according to the type of project and its particular requirements.

The design process involves the preparation of various types of reports with different objectives and purposes in conveying information.  It is important that any design stage report provides the correct level of information at the right point in the project delivery process and conveys technical information in a clear and easily accessible format.  The guide examines design reports prepared at RIBA stages 2 and 3 and proposes key aims for each report to assist in understanding their objectives and considerations with respect reporting at these design stages.

Every company has a different style but the ability to plan and prepare reports in an efficient manner can often save time and avoid unnecessarily lengthy documents. The guide looks at the elements of planning a report to help facilitate the efficient preparation of documents and outlines the key activities at the various stages of the planning process.

For any report, the information provided should be easy to find and written in such a way that the reader can understand it. The guide explains the common components of a typical report to assist in structuring a document together with planning the content and organising information.  Comparisons can be very important in technical reports and the guide looks at the ways comparisons can be organised to help readers understand a topic better, as well as assisting the decision process of choosing one option out of a group.

The publication provides a useful guide in developing technical writing skills, with tips and key considerations for report preparation.

 

Richard Tudor

Richard Tudor is a Senior Technical Director with WSP and has been an integral part of their Group Technical Centre since 1999. His responsibilities include technical quality, specification development, knowledge management, technical training, designing for safety, technical support and improving project delivery.

Richard is a building services engineer with over 43 years’ experience in the industry covering design and project management spanning most industry sectors.

For many years’ he has participated in various BSRIA publication steering groups and is currently a member of the BSRIA publications review panel.

In addition Richard has authored several BSRIA publications and lectures on Safety in Building Services Design, a one-day training course.  BSRIA publications Richard has authored include:

 

 

 

Construction quality could be catching up with other industries

This blog was written by Lynne Ceeney, Technical Director at BSRIA

If you order steak and chips at a restaurant, but the waiter delivers hake in strips, you would be rightly annoyed. Instinctively you blame the waiter, but it could have been a problem with the ordering software, a misreading in the kitchen or just the wrong dish being picked up.  Whatever, you would send it back – it is not what you ordered.   In new buildings, this happens all the time.  Poor communication during the briefing, design and construction process, and poor handover and operation leads to a building that doesn’t deliver the performance the client thought they had ordered in the first place.  Unlike a dinner, it’s not practical to send a building back and wait for the one you asked for to be delivered.  Instead extensive snagging lists, expensive defect resolution and defensive “best we can do” fixes by the facilities team are often used to try and get the building closer to its intended performance – and “closer” is usually the best that can be achieved. The owner and occupier end up with a disappointing building, and the designers and construction company are left with a disappointed client.  The blame chain spreads, and it’s hard to pin down the fault.

The impacts run way beyond disappointment.  Occupier discomfort impacts staff retention, and the increased societal focus on wellbeing indicates that employees will expect higher standards from their place of work.  Poor commissioning or confusing controls mean building systems that don’t work properly and need constant attention or premature replacement, as the uncomfortable working conditions impact on worker productivity.  Inefficient buildings use more energy requiring more cash and causing more carbon emissions.  In fact buildings contribute 37% of UK green house gas emissions from gas heating, and consume 67% of the electricity used in the country.  It’s no wonder that larger investors are taking much more of an interest in the sustainability and performance of buildings rather than just the upfront capital cost.  Good buildings are an asset, poor buildings become an expensive liability in terms of operating costs and void periods. Competitive property markets compound this situation.

With a typical building having a life expectancy of at least 60 years, we are building in problems for this generation and the next.  We’re not great at mass retrofitting, (and the high demand for additional building stock means a capital, skills and material shortage) so we need to get it right first time.  Effective management tools with this aim abound in other sectors, for example DRIFT, (Doing it Right First Time), Six Sigma, LEAN and Zero Defects.  We see the approach being used in food manufacture, car making, pilot training, and patient healthcare, to name but a few sectors.  So what about construction?

Soft Landings is the equivalent tool for the construction sector.  This tried and tested process was developed to help to produce better performing buildings – not necessarily exceptional in performance, but buildings that deliver in operation what they were designed to do in the first place.  Getting a building right requires a shared focus on operational performance of the building right from the start, and throughout the design, construction and commissioning process.  The use of Soft Landings delivers this shared focus, improving communication and collaboration between all parties in the building delivery chain.  It helps everyone to avoid the pitfalls that diminish operational building performance. It fits with RIBA stages, integrates into existing construction processes, and does not require a specific building procurement model.  You can download Soft Landings guidance from the BSRIA website .

However it is always helpful to find out about real world experiences, and to talk to others who are using Soft Landings to help them to produce better buildings.  With this in mind, BSRIA have organised the 2017 Soft Landings Conference (June 16th 2017 at RIBA, Portland Place, London W1B 1AD). You will hear from a range of speakers from different parts of the construction process – including clients – who will explain how they have used Soft Landings in their projects, and the value that it has delivered for their buildings.  You will also hear their hints and tips, and there will be plenty of time to ask questions and take part in discussion both in conference and over lunch.

It’s time for the construction industry to catch up with other industries in terms of quality, to produce buildings that perform as expected, through a delivery process that gets it right first time.  Soft Landings is a process that helps the delivery chain to do this.  For more information on the conference please contact our Events Manager, Tracey Tilbry.

 

The Lyncinerator on… Bathroom taps

This blog was written by Lynne Ceeney, Technical Director at BSRIA

Don’t get me started.  We’ve all been here.  You’re out and about, maybe having a meal, going shopping or visiting offices, and you have to use an unfamiliar bathroom.   You approach the basin to undertake that most basic of human hygiene tasks, washing your hands.  And looking around, you realise you have absolutely no idea how to turn on the tap…  and in many cases, you have absolutely no idea where the tap is.  If you are lucky, there is an obvious spout from which the water should come out.  However in many cases, the detective work starts here – the spout might not actually be in a tap, it might be be under the shelf, or embedded in the granite.  Second detective task:  getting the water to flow.  Sometimes it is a button.  Sometimes a toggle. Sometimes something to turn.  Sometimes a sensor – which sometimes works.  Let’s assume you have managed to actually get some water to use, and you can start on your third detective task – getting the temperature you want.  Often helpful “danger” notices warn you that the hot water is hot (really Sherlock??  – well, I guess putting up a notice is easier than sorting out the supply issue). Clearly many, tap designers are a fan of puzzles, and assume you are too.  No clues to indicate how to adjust temperature, no blue or red symbol to help you out.  You have to eliminate the suspects until you find a way that works.  And after the application of a lot of thought and puzzling, hopefully you get to wash your hands.

Presumably someone thought these taps look great – but ‘clean lines’ are triumphing over clean hands. Whilst this functional obfuscation is frustrating for the average user, it is nigh on impossible for people with learning disabilities, confusion or dementia, something that we can expect to see more of in an aging population. It leads me to wonder what the tap designers and those who chose the bathroom fittings were thinking about.  Probably not the user.

Why should you have to solve a series of problems in order to undertake such a basic operation as washing your hands?

Surely the purpose of designing a functional object is to get it to work, and that requires a combination of form, technology and human behaviour.  The human / technology interface is a critical element of design.  It is irritation with taps that has prompted my thinking, but it led me to wider thinking about the design of buildings and their systems, and a series of questions which maybe we should use as a checklist.

Human error is cited as one of the problems leading to poor building performance, but isn’t it really about design error?  Are we more concerned with what it looks like rather than how it will work?  Are we introducing complexity because we can, rather than because we should?  Why don’t different systems work with each other? Are we thinking about the different potential users?  Do we understand the behaviour and expectations of the people who will use the building or are we expecting them to mould to the needs of the building? Is design that confuses sections of the population acceptable?   Are we seeking to enable intuitive use or are we setting brain teasers? Do we care enough?

We should wash our hands of poor design.  But once we have washed them we have to dry them.  And you should see this hand dryer.  Don’t get me started…

Lynne Ceeney will be contributing a bi-monthly blog on key themes BSRIA is involved in over the next year. If there’s something that ‘gets you started’ let us know and we may be able to draw focus to it in another blog. 

Contractors can’t build well without clients that lead

Did anyone see the recent news story on the Edinburgh PFI schools with structural failures? In 2016 we shouldn’t be constructing buildings with feeble brickwork. We have Victorian and Edwardian schools that have been standing for over 100 years without these problems. More ironically we have 1960s CLASP schools – built on a budget with the flimsiest of constructions – still standing and performing their role well after their sell-by date. OK, they’re usually freezing in winter and boiling in summer, with asbestos in places a power drill shouldn’t reach, but at least they’re still standing.

The reasons for these high profile failures are easy to park at the door of the PFI process. One can blame cost-cutting, absence of site inspections, and lack of quality control. Some even say that the ceding of Building Control checks to the design and build contractor is a root cause: site labour can’t be trusted to mark their own exam paper when their primary interest is to finish on time and under budget.

Some commentators blame the design process, and bemoan the loss of days of the Building Schools for the Future programme when design quality was overseen by the Commission for Architecture in the Built Environment (CABE). The erstwhile CABE may have tried to be a force for good, but project lead times become ridiculously long and expensive. And would it have prevented structural failures? Hardly likely.

The one cause of these failures that doesn’t get enough press coverage is the important client leadership and quality championing. It can be argued that clients get what clients are willing to pay for, and there’s no industry like the construction industry for delivering something on the cheap. The cost-cutting, the emphasis on time and cost at the expense of quality control – all this can be pinned on a client base that does not lead, demand, oversee, and articulate what it wants well enough to prevent the desired product being delivered at the wrong level of quality at the wrong price.

Which means that clients have to a) get wiser on what can go wrong, b) get smarter with their project management, and c) articulate what they want in terms of performance outcomes. Truly professional designers recognise this, and are prepared to guide their clients through the shark-infested waters of writing their employers requirements. But once that is done the client’s job is not over. They can’t simply hand the job over to the main contractor and turn their back until the job is complete. They need to be closely involved every step of the way – and keep key parties involved beyond practical completion and into the all-importance aftercare phase.

Soft Landings provides a chassis on which focus on performance outcomes can be built. The chassis provides the client with a driving seat to ensure that standards are maintained, along with a shared construction team responsibility to make sure the building is fit for purpose.  The forthcoming BSRIA conference Soft Landings in London on 23 June is a good opportunity to learn how this can be done. It will focus on workshops where problems can be aired and solutions worked through. It will be led by experts in the field who can suggest practical solutions for real-world projects. Why not book a place for you and a client? For more information visit the BSRIA website. 

A BEMS is the key to unlocking a more sustainable and resilient data centre

Sam Fitzgerald, Key Account Manager at Trend Control Systems

Sam Fitzgerald, Key Account Manager at Trend Control Systems

Sam Fitzgerald, Key Account Manager at Trend Control Systems, explains the functions of a Building Energy Management System (BEMS) and the vital role this technology can play in today’s state-of-the-art data centres.

In order to minimise the potential for downtime, data centres must be resilient, compliant with all relevant standards and operating procedures, while at the same time minimising overall energy consumption. BEMS have the proven ability to maintain the high levels of uptime and energy efficiency that are demanded by users by proactively monitoring, analysing, understanding and improving a data centre’s building services infrastructure.

Under control

A BEMS monitors, manages and controls building services and plant by ensuring that it operates at maximum levels of efficiency and reliability. It does this by maintaining the optimum balance between conditions, energy use and operating requirements.

By controlling an entire estate’s building services from a centrally managed location, it enhances the ability to interact with, and improve the quality of, the data centre infrastructure. Intelligently understanding and responding to patterns of usage means that, for example, cooling can be fully optimised and lighting turned off in unoccupied areas.

Being aware of the way a data centre works makes it possible to determine which best practices to implement in order to protect IT assets, while minimising costs and the potential for downtime.

Energy levels

It is estimated that data centres account for around three per cent of the world’s total energy consumption and with growing use of the cloud and the rise of the Internet of Things, that figure is only going to go up. Furthermore, according to the Digital Power Group, the sector uses 50 per cent more energy than global aviation and is now considered one of the major sources of global CO2 emissions.

Efficient use of energy is clearly no longer an option and there is a growing raft of legislation and regulation that is specifically designed to ensure that energy consumption and carbon emissions are measured accurately, and that any applicable data is available for analysis.

Given that up to 84 per cent of a data centre’s energy consuming devices can be directly under its control, a BEMS is without doubt the most effective way to gain a true understanding of where savings can be made, monitored and sustained. A properly specified, installed and maintained BEMS will ensure that building services operate in strict accordance with demand, which will also help to deliver the lowest power usage effectiveness (PUE) rating.

Far from being ‘fit and forget’, a BEMS can evolve with the building over a period of time. It must be regularly maintained and, where necessary, adjusted to ensure that it provides the best possible quality of service.

The bigger picture

Sustainability isn’t just about energy usage though. A BEMS can also limit wear and tear on plant equipment by using it more efficiently and making sure that any maintenance issues are highlighted.

In addition, a properly configured BEMS will be scalable, future proof and full backwards compatible. A system that allows easy upgrading and reconfiguration is always preferable – not all systems are the same and the costs of installation can vary depending on the protocol used.

Trend is committed to ensuring the backwards compatibility of its technology. For example, its new IQ®4 controllers are able to communicate with the very first device that it manufactured way back in 1982. The IQ®4 modules are also interchangeable for additional future proofing, scalability and system longevity – all of which can protect the financial investment in a BEMS.

Always on

According to research carried out by Emerson Network Power and the Ponemon Institute, the cost of data centre downtime is just over $7,900 per minute. Total data centre outages in 2013 averaged a recovery time of 119 minutes, equating to about $901,500 in total cost.

As well as being incredibly inconvenient, it’s the damage to mission critical data, impact on organisational productivity, harm to equipment, legal and regulatory repercussions and lost confidence and trust among key stakeholders that can prove difficult to recover from. A data centre should therefore look to build resilience into its operation via a BEMS, minimising any risks associated with situations such as plant failure or environmental conditions falling outside acceptable parameters.

Alarms can be programmed into a BEMS, so that in the event of equipment malfunction the problem can be identified and rectified as quickly as possible. For instance, on an air-handling unit, if a flow sensor highlights that airflow is decreasing it is likely to mean that a filter is blocked. Addressing problems like this early on will ensure that temperature conditions in a data centre remain within those agreed in a service level agreement (SLA), minimising the possibility of penalties. A BEMS can also minimise the amount of time required to carry out such tasks by either automating them or undertaking comprehensive data acquisition.

Rules and regulations

Compliance with statutory legislation, key performance indicators (KPIs) and SLAs are fundamental to the success of any data centre.

A BEMS provides overall visibility of plant energy use and allows personnel to see in real time what’s happening within a facility, therefore helping to make sure that equipment stays within a manufacturer’s specified temperature and/or humidity range. In addition, details of data centre conditions on a 24/7 basis can be logged to provide a full audit trail.

A growing number of data centre operators are also choosing to put an energy management system (EnMS) in place to achieve compliance with ISO 50001 or the standards used to measure data centre efficiency developed by The Green Grid. Having a BEMS in place will help demonstrate a desire to continually improve a data centre’s energy efficiency.

Therefore, the requirement for this technology in data centres is only set to increase.

For further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com.

Twitter | LinkedIn | Google+ | YouTube

Being a Young Engineer

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

This blog was written by Laura Nolan, Sustainability Engineer at Cudd Bentley Consulting

What is it like to be a young Engineer?

I think it’s fair to say the term Engineer in itself is very broad so for the purpose of this blog my focus is my discipline, Building Services Engineering.

So how did I become an Engineer? Through my love of maths and problem solving, I chose to study a common entry Engineering Degree in Dublin Institute of Technology. Following the first year of Maths, Applied Maths, Physics and Chemistry, I then chose the Building Services route as it seemed the most interesting to me and it was. It offered modules in a wide range of subjects from lighting design, fire engineering to smoke control and acoustics. As well as the heating, cooling and ventilation design as you would expect.

I graduated in 2010 from Dublin Institute of Technology to a bleak construction industry in Ireland so I looked elsewhere and succeeded in getting a job here at Cudd Bentley in Ascot. Since graduating and entering the workplace as a Consultant Engineer, no two days have been the same, each week offers new challenges and the range of projects I have been involved in has been exciting. Projects I have been involved in range from retail to residential, shopping centres to extensive refurbishment projects. I work as part of a team and although I am mainly office based, I regularly visit site to carry out inspections or for Design Team meetings, offering an enjoyable diversity to my job.

Quite quickly into my career I realised my interest in the area of Sustainable Engineering Design and with the support of my company, Cudd Bentley Consulting, I have completed a range of courses including CIBSE Low Carbon Energy Assessor, Elmhurst On Construction Domestic Assessor and Bentley Hevacomp modelling course to allow me to be proficient in thermal modelling and a Low Carbon Consultant. I really enjoy building modelling and have had the opportunity to work with some interesting models here at Cudd Bentley. I use my models to generate a variety of outputs including heat loss and heat gain calculations, energy and carbon saving potential, overheating analysis, Energy Performance Certification and Part L Compliance.

Sustainability is an area that I am particularly interested in and this year I have begun an MSc in Renewable Energy in Reading University. I enjoy learning and I don’t think I will ever be finished learning. Topics which I am particularly interested in currently are Nuclear Energy and the Feed in Tariffs Scheme for solar energy. I think it will be a real shame if the Government chose to drastically reduce the Feed in Tariff Scheme. I am also eager to see what will come from the Climate Change Conference, COP21, in Paris this month.

I have been attending events for the BSRIA Young Engineers Network for the past five years and I was delighted to be asked to be the Chairwoman of the Network this year. I would encourage all young Engineers to attend as it gives a unique opportunity to meet experts in their field, discuss current topics with your peers and to network with fellow young Engineers.

I was fortunate to be surrounded by highly experienced Engineers from the beginning of my career and one piece of advice I would offer every young Engineer is to immerse yourself in the knowledge of those people around you with such experience as well as making sure to put your own young and fresh approach to it where appropriate. The industry is constantly changing and it’s important to be constantly evolving.

Being a young Engineer is challenging, exciting and for me a fantastic career.

Goodbye BIM… Hello digital

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

This blog was written by Ben Roberts, Associate and BIM Delivery Leader at Hoare Lea

When BIM first reached the masses in about 2010 it was exciting: finally the construction industry wakes up to the 21st century and embraces the ability of computers to take on our more mundane tasks and improve communication! A data-centric approach to managing projects meant that appointments would be clearer, design computation could yield instant feedback, models would feed directly into fabrication robots and building operators could simply and efficiently access all the information about their assets at the click of a button.

However in 2015 there seems to be a wide spread consensus that BIM is just an expensive, less flexible way of delivering projects, and sadly the acronym is often a sure fire way of clearing a room.

So beyond the UK government’s level 2 BIM deadline in April 2016 there is no “level 3 BIM”; instead it is “digital built Britain”. And the industry is following suit; let’s remove this acronym with too much baggage and stigma and get down to what it really means: sensible data management, better quality communication of design intent, easier and more effective collaboration, and many opportunities to do things more quickly and accurately.

When thinking about “digital” rather than “BIM”, we find ourselves asking a more straight forward question: what can computers and data do for us?

Firstly, computers are capable of recording vast amounts of data and processing it very quickly, but to date they’re not so good at the more creative stuff; that’s what people are for. So it follows that we can “outsource” a lot of our thinking time to a processor by offloading the more mundane, repetitive tasks, leaving our creative minds to focus on the more interesting things. Good technology should allow people to spend less time alone staring at a computer!

As an example, BREEAM is a way of addressing a very important aspect of our building design (environmental impact) but is often seen as a time-consuming form filling exercise. This is a terribly boring thing for a human to do, but provides essential information in a usable common structure. This is exactly what computers are good at, so let’s automate this important but boring compliance process so that humans can get on with doing the interesting important tasks.

Ben Roberts blogWe are now also capable of doing things that were previously impossible or impractical. Virtual reality and augmented reality are now becoming cheaper and easier; anyone with a smartphone has a choice of free apps to upload your 3D models, and if oculus rift is outside your budget, try google cardboard for just £6! The MX3D Amsterdam bridge project is proving that 3D printing is not just for small objects; perhaps entire pipework systems could be printed on site too? Many other emerging technologies are presenting completely new options: reality capture, the internet of things, cloud computing, wearable technology and visual scripting are just a few examples.

Secondly, data can be very informative if you know what to do with it. Buildings can potentially generate enormous amounts of data, and in the right hands that can quickly be used to assess energy performance, make comparisons of different technologies, or identify faults in building systems, for example.  Raw data is daunting, but visualisation of that data is easy and provides a more immediate form of interpretation. As 2 examples, graphs and infographics are clear methods of showing key statistics and are easily generated in Excel, and 3D models give an intuitive interface to accessing associated data at various stages in a project lifecycle.

Finally, you don’t have to be a computer scientist to use a computer these days – my grandad is 95 years old and controls his heating remotely using his iPad. Much of the software available for design, construction and operation of buildings is going this way too. Virtual reality is a good starting point for the technologically averse, but there are plenty of other technologies that offer simple solutions for anyone.

So I encourage you all, upon hearing the acronym “BIM”, not to run for the hills but to simply consider what computers and data can do to help you.

Ben is a chartered mechanical engineer and holds the position of BIM Delivery Leader for Hoare Lea, a role which involves pushing the boundaries of software tools and enabling teams to deliver BIM projects as efficiently and effectively as possible around the practice in the UK and Middle East. He specialises in using BIM models for design calculations. Ben is an active member of the CIBSE BIM steering group, the BSRIA BIM Network, and is involved in developing many industry standards for MEP BIM delivery. He has written articles for a variety of construction industry journals on the subject of BIM, and regularly presents and lectures on the subject around the world.

Just when you thought it was safe to relax about Energy

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Did you hear about the crisis that hit the UK on 4th  November, causing  massive disruption, and provoking outcry in industry, and suddenly sent energy rocketing back up the UK’s political agenda?

You probably didn’t hear this, because the first major threat to the UK’s national grid this winter still left it with a princely 2% spare capacity, sufficient for the National Grid to issue a “notification of inadequate system margin” (NISM), but insufficient to actually disrupt the service.

While this was only the first stage of alert, and while an abnormal lack of wind was an aggravating factor – bringing the UK’s now significant wind generation capacity almost to a halt, one of the mildest starts to November on record may have helped to save the day. As so often in human affairs, a “near miss” is treated as a near non-event. A single “hit” on the other hand could have major repercussions, prompting much more urgent action not just on the resilience of the UK’s national grid, but on how buildings respond to peaks and troughs in energy demand.

BSRIA has been reporting and analysing on Building Energy Management and the issues around it for a number of years now. One of the trends that we have noticed is that over time, more suppliers of building energy management solutions include some form of Demand Response as part of their solution. This enables a temporary reduction in the power drawn by certain services in the building where this does not impact on productivity or well-being.

Our latest review of the global leaders in Building Energy Management showed that almost half now offer demand response, the highest figure that we have seen to date. This includes both the global leaders in Building Automation and Energy Management and suppliers specialising in energy management.

At the same time, energy storage is being taken more serious as a viable and cost-effective way of providing additional resilience and peak capacity, both for energy suppliers and in some cases for consumers. While the UK is still some way from having a thriving market in home energy storage systems comparable to that developing in Germany (where residential electricity is significantly more expensive), it seems quite likely that any significant grid outages will give a boost to the market for battery storage for both residential and non-residential use.

It is still quite hard to judge how probable a major power outage is in the UK this winter. There are already further processes for demand reduction which can be invoked if the situation gets tighter than it did on November 4th. However a coincidence of severe cold with a lack of wind, and unplanned outages at power stations is not inconceivable. And the major strategic initiatives, such as the construction of two new nuclear power plants, will take years to come online.

The UK has got used to ‘living dangerously, and so far has got away with it. But the sensible response to a lucky escape is to learn the lessons, and  not to assume that your luck will go on holding indefinitely.

The very least we can say is that all organisations should be looking at the potential implications of even a short interruption to power supplies, and how they can best mitigate these.

I shall be talking a bit more about BSRIA’s latest research into building energy management and related areas in a webinar on Tuesday 24th November, so I hope that you will be able to join me then

University of Reading Research Study: Indoor Environmental Quality and occupant well-being

Gary Middlehurst is a post-graduate student at the University of Reading's School of Construction Management and the Technologies for Sustainable Built Environments

Gary Middlehurst is an Engineering Doctorate (EngD) student at the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE)

Looking at a new approach for determining indoor environmental quality (IEQ) factors and their effects upon building occupants, BSRIA has provided the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE) Centre access to their Bracknell office building known as the “blue building”.

 IEQ factors are proven to affect occupant well-being and business performance, however, for the first time, actual environmental and physiological field measurements will be compared. New research therefore has been developed by the University of Reading, which will seek to understand these relationships and the potential impacts of known IEQ factors on perceived levels of occupant satisfaction and well-being.

Understanding fundamentally how IEQ factors can affect building users, will allow system designers to finally visualise occupant well-being, personal satisfaction and productivity as part of a holistic business performance model. Based upon empirical measured IEQ factors and surveyed occupant data, the research hypothesis proposes that high-density occupation can reduce office workplace environmental footprints significantly when physiological impacts are understood.

The research methodology brings together measured environmental characteristics, physiological performance measurements, POE survey responses, and then uses an Analytic Hierarchy Process (AHP) to assess existing workplace designs.

Gary Middlehurst blogReducing operational costs and increasing occupant satisfaction and well-being is seen as a distinct competitive advantage, however, businesses remain focused towards meeting the challenges of energy security, demand side management and carbon commitments. The research, therefore, will provide empirical data to create informed business decisions focused upon these challenges. This is done by increasing the importance of well-being and by defining performance as a key metric.

Field research is currently underway on the top floor within the “blue building”, where 4 willing volunteers are participating in physiological sensory measurements and POE response surveys. The project will be running for 12-months, with the initial current 2-week data acquisition period being repeated a further 3 times during winter, spring and summer of 2015/16.

The research is also being conducted at two other similar office environments in Manchester and London, and seeks to support the hypothesis that hi-density workplaces are a further sustainable step in designing and operating more efficient and effective intelligent buildings.

BSRIA relaunches Topic Guides

Construction compliance 3BSRIA is pleased to announce the relaunch of our information topic guides with the first release of this ‘At a Glance’ series TG07/2015 At a Glance – Airtightness available to download from the BSRIA website now.

The BSRIA Topic Guides are designed to be an at a glance publication introducing readers to key industry topics and suggesting further reading. BSRIA’s Information Centre is relaunching them with the aim of providing an introduction to key topics in the industry providing readers with an understanding of the area and how they can learn more. A new addition to the topic guides will be a feature by a BSRIA expert on the subject, offering a fresh insight. The airtightness topic guide features an insight into the legislation by our expert David Bleicher.

BSRIA’s Information and Knowledge Manager Jayne Sunley said ‘The topic guides are a great way of providing members and non-members alike with good information that will hopefully clarify some of the questions they have about topics they are new to, they’re not designed to be an all-encompassing guide but rather a starting point for anyone looking to learn more. The addition of the expert insight is just a way of showing readers that there is more to the topic than they might have first thought’.

TG07/2015 At a Glance – Airtightness offers readers a view of why airtightness is important for our building stock and how a building can be tested. It is now free to download from the BSRIA website for members and non-members alike.

Future 2015 titles in the At a Glance series will include Legionella, Data Centres and Smart Technology.

%d bloggers like this: