Indoor air quality: 7 contaminants to be aware of

In the UK, on average people spend more than 90% of their time indoors.

Indoor air quality is affected by outdoor pollution, but also by indoor sources and inadequate ventilation. Air pollution can have a negative impact on our health; from short term effects such as eye irritation and coughs to long term effects such as respiratory infections and cancer.

Here, we take a look at contaminants commonly found in buildings. For more information on how to manage indoor air quality, please visit the BSRIA Air Quality Hub.

Carbon Dioxide

A colourless and odourless gas resulting from combustion and breathing. At higher concentrations carbon dioxide can cause drowsiness, fatigue, and dizziness as the amount of oxygen per breath is decreased. In an enclosed environment, ventilation is key to reduce carbon dioxide build-up.

Carbon Monoxide

An odourless and colourless gas produced by incomplete combustion of fuels such as oil, wood, and gas. Carbon monoxide binds with haemoglobin in blood cells instead of oxygen, rendering a person gradually unconsciousness even at low concentrations.

Ozone

Whilst beneficial in the stratosphere, when found at ground level, ozone causes the muscles found in the respiratory system to constrict, trapping air in the air pockets, or alveoli. Ozone can be produced by certain air purifiers, laundry water treatment appliances and facial steamers.

Particulate Matter 2.5

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles are 2.5 microns or smaller. PM2.5 sources include transportation, power plants, wood and burning and can cause airway irritability, respiratory infections, and damage to lung tissue. 

Particulate Matter 10

A complex mixture of solid and or liquid particles suspended in air, where the diameter of the particles is 10 microns or smaller. PM10 sources include construction sites, industrial sources, and wildfires. These inhalable particulates can obscure visibility, cause nasal congestion, and irritate the throat. 

Formaldehyde

A colourless gas that is flammable and highly reactive at room temperature. Formaldehyde is a carcinogen and a strong irritant. Formaldehyde can be found in building materials, resins, paints, and varnishes and can last several months particularly in high relative humidity and indoor temperatures.

Total Volatile Organic Compounds

Carbon-based chemicals that easily evaporate at room temperature, most commonly found in building materials, cleaning products, perfumes, carpets and furnishings. Long term exposure can cause, cancer, liver, and kidney damage whilst short term exposure can cause headaches, nausea, and dizziness.

Find out more about air quality at the BSRIA Air Quality Hub.

UK heat pump market has weathered Covid-19 challenges. Coherent policy support is now needed to unlock its full potential.

by Krystyna Dawson, BSRIA Commercial Director

BSRIA has released its latest global heat pump market reports, including the eagerly awaited report on the status of the UK heat pump market.

Last spring, deep uncertainty set in across the markets as lockdowns in many countries disrupted trading. There was fear within the heat pump industry of a significant slowdown in what had previously shown dynamic market growth.

Indeed, the global heat pump market posted a decrease of 1.5% in 2020. However, performance varied across regions: with 12% market growth year-on-year, Europe has been at the forefront; the UK also saw positive development with heat pump sales increasing by 9.2% in 2020.  

Green Homes Grant

UK heat pump market sales were helped by the RHI and the Green Homes Grant scheme in 2020. The latter has proven to be important for the market, which has seen sustained growth in the refurbishment segment despite the number of installations in new buildings stalling due to the lower level of new home completions.

However, heat pump installation still represents a major challenge in existing homes. The ongoing review of Part L and Part F of building regulations offer hope that refurbishments in homes and buildings will be conceived with low carbon heating in mind, but the review’s outcomes are yet to become a legal requirement.

Moreover, even though there is market potential for a higher number of heat pump installations in existing homes, the government has, so far, been unable to unlock it. The Saturday 27th March announcement of the closing of the Green Home Grant scheme to new applicants by 31st March 2021 has been yet another example of the disappointing approach to deployment of energy efficiency measures and heat pumps.

UK heat pump market: Achieving a net zero carbon economy

Heat pumps are among the technologies the government has identified as key to achieving a net zero carbon economy by 2050. The Prime Minister’s 10 Point Plan for the UK Green Industrial Revolution includes the target to deploy 600,000 heat pumps a year by 2028.

The UK saw around 37,000 heat pumps sold in 2020. The extra £300 million in funding, moved from the soon-to-be defunct Green Homes Grant to local authorities to enable energy efficiency upgrades for lower income households, may bring additional installations. But even if all 30,000 applicable homes were fitted with heat pumps, the numbers are insufficient to sustain hope of reaching the PM’s ambitious target.. There is potential for more heat pump installations in existing homes, and the interest in heat pumps is growing among home and building owners. The heat pump industry is also working at full speed to deliver innovative products that respond to end-user expectations and environmental challenges.

HVAC industry skills gap

However, unless demand from existing homes and buildings is unlocked at full scale, and until real attention is paid to the sufficient availability of a skilled workforce, the heat pump market will struggle to see the acceleration needed to reach the government target and make a difference in the level of carbon emissions from UK homes and buildings.

Coherent policy and financial support are needed to match the readiness to act on both industry and consumer sides. Integration of heat pumps in a home or a commercial building requires a holistic approach where design and affordability should be considered to deliver carbon savings, cost savings and a healthy and comfortable environment.

What makes a good PICV?

by Andrew Pender, National Sales Manager at FloControl Ltd.

Over the last 5 years, PICVs have been widely accepted as the best method of terminal control in variable flow systems due to their energy saving potential.  The surge in popularity has led to an influx of products with varying designs, features and functionality.  This article reviews some of the mechanical PICV design elements and how they can impact on the PICV’s performance in an applicational context.

Where do we start?

To help specifiers and project engineers assess which PICV is best suited for an application, the BSRIA BTS1/2019 standard has been developed to provide a consistent test method for PICV manufacturer’s products to be benchmarked against.

Manufacturers should be able to provide test results in line with this technical standard which covers:

  • measured flow vs nominal flow
  • pressure independency or flow limitation
  • control characteristics, both linear and equal percentage
  • seat leakage test

Repeatability & Accuracy are central to the tests and they are key to good temperature control and realising the full energy saving potential of a PICV installation.

An accurate PICV means the measured results will be equal or very close to the manufacturer’s published nominal flow rate each time it is measured, known as low hysteresis.

Accuracy has a positive impact on a building’s energy consumption.  “Measured over time, a 1% increase in the accuracy of a PICV can result in a reduction of around 0.5% in the building’s overall hydronic energy consumption” (FlowCon International).

Valve accuracy is driven by the design, manufacturing process and material used for the internals of the valve.

  • The design of the PICV should allow for Full Stroke Modulating Control at all flow settings without any stroke limitation.  The flow setting and temperature control components should operate independently.  Some PICV designs use the stroke of the actuator stem to set the flow rate resulting in limited stroke and control.  This can cause issues at low flow rates whereby the PICV effectively becomes on/off irrespective of actuator selection.  
  • The manufacturing process and the component materials also contribute to accuracy. For example, injection-moulded, glass-reinforced composite materials cope better with water conditions that valves can be exposed to.  They also have less material shrinkage than other materials, delivering higher accuracy than valves that use alloy components.

What else should be considered?

The importance of accuracy and repeatability are paramount when selecting a PICV however there are other factors that should be considered:

  • Wide flow rate range – including low flow rates for heating applications, ideally covered by a small number of valves.
  • Setting the flow rate – setting the PICV can influence the accuracy. There are various scales used including set points related to flow rates and percentages. PICVs with very detailed scales with small increments between set points are more difficult to set accurately, leading to higher tolerances than the BSRIA standard recommended + 10%.
  • Wide ΔP Range – low start up pressure. To operate satisfactorily, the PICV requires a minimum pressure differential to overcome the initial spring resistance within the PICV, enabling the spring to move and take control. Care should be taken to ensure the minimum pressure differential is as low as possible to maximise the energy saving potential of the system.  The maximum DP should also be considered to ensure the PICV operates effectively under part load conditions.
  • Dirt tolerance – the Valve Control Opening Area [A] on all PICVs, irrespective of the manufacturer, is identical for each flow rate. The shape of the Control Area can be different depending on the valve design. A Rectangular flow aperture is more tolerant than an Annular flow aperture. Debris will pass through the rectangular aperture more easily.
  • Removable inserts – deliver the greatest flexibility and serviceability.  Products can be easily serviced in line without disruption. This is especially of value when water quality is poor or when flow requirements change due to changes in space usage.  Inserts can also be removed during flushing.  Valve bodies can be installed with blank caps eliminating the risk of damaging or contaminating the PICV element, whilst having a full-bore flushing capacity.
  • Installation – PICVs in general have no installation restrictions however in line with BSRIA BG29/20, it is recommended that PICVs should be installed in the return branch as small bore PICVs will have a high resistance which will hinder the flushing velocity during the forward flushing of terminal units.

Making the right choice

There are many aspects for specifiers and project engineers to consider when selecting the right PICV for an application.  The BTS1/2019 standard provides an excellent benchmark, but the individual designs also need to be carefully considered.  A correctly selected PICV will ultimately lead to a more comfortable indoor climate with better control of the space heating and cooling as well as potentially reducing the pump energy consumption in a building by up to 35%.

This post was authored by Andrew Pender, National Sales Manager at FloControl Ltd. All views expressed are those of the author. If you belong to a BSRIA Member company and wish to contribute to the BSRIA Blog, please contact marketing@bsria.co.uk

Maintenance of drainage systems to prevent flooding and water pollution

By David Bleicher
BSRIA Publications Manager

Every building has a drainage system. In fact, most have two – a foul drainage system that takes waste from toilets, showers etc. and a storm/surface water drainage system that takes rainwater from roofs and paved areas. Older buildings may have a combined system, and in some locations the infrastructure buried under the street is a combined sewer – a legacy from the pioneering days of city sewerage systems.

As with maintenance of any building services systems, the first step is to know what you’ve got. Every site should have a drainage plan, showing which drains are located where, what direction they flow in and what they connect to. If there isn’t one, it’s not hard to create one – even though the pipes are buried, there’s plenty of evidence above ground in the form of manholes.

When there is a drainage plan, it’s worth checking how correct and up-to-date it is. Sometimes, the exercise of doing this brings up evidence of mis-connections, such as a new loo discharging into a storm manhole. It’s also worth marking drain covers with the service (F for foul or S for storm) and a direction arrow.

Drainage manhole over showing 'S' arrow to indicate storm drainage and direction of flow.

In foul drainage systems, the biggest headaches are caused by things going down the drain which shouldn’t – like wet wipes, sanitary products and hand towels. So the best form of preventative maintenance is to keep building occupants informed, with polite notices and clearly-marked bins in strategic places. Then there is the fats, oils and greases (FOG) that go down the plughole in catering establishments. If these find their way into the drains and sewers, they’re pretty much guaranteed to solidify and cause blockages – sometimes known as ‘fatbergs’. That’s why there should always be an interceptor in place, also known as a grease trap. This needs maintenance – the generic frequency for cleaning out a grease trap, stated in SFG20 (a common approach to planned preventative maintenance), is monthly. But this will be highly dependent on how the facility is used.

If blockages go unchecked, they may also go unnoticed. That is until sewage starts backing up into the building, or overflowing into storm sewers, which eventually discharge into lakes and rivers. These are delicate ecosystems, and the introduction of detergents and faecal matter can be very harmful to aquatic life and of course humans.

Rain, can pick up contaminants from both the air and the land, so once it has reached a storm/surface water drainage system, it has picked up dirt, oil and chemicals from air pollution, roofs and paved areas. Traditional systems have no means of dealing with this, and also must be sized for occasional extreme storm events, so the pipes are very large and mostly used at a fraction of their capacity. Sustainable drainage systems, or SuDS, attenuate the flow of rainwater to watercourses and emulate the way natural ecosystems treat this water. But they need maintenance. For example, any tree routes that could block a soakaway should be trimmed annually, and green roofs may require weeding on a weekly basis during the growing season.

For more information on the maintenance of drainage systems, please explore the BSRIA Information Service

How hard can opening a new office be?

As some of you may or may not be aware, the new BSRIA North site is now open for business.

For organisations opening a new office or site, it should be a time of great anticipation and excitement as the company sets out a new path, but for many they approach this process with fear and trepidation and for those tasked with the job of making it happen, it can potentially be an extremely stressful period of time.  As Project Manager for the setting up of BSRIA North, I thought I would share with you my experiences – the very good, the sometimes bad and the occasional ugly!

This blog was written by June Davis, Business manager of BSRIA North

I will be sharing my experiences and tips on:

  • Identifying and interpreting the business requirements
  • How to determine the must have’s versus the nice to haves
  • The importance of establishing an internal project team – you can’t do this alone!

BUSINESS NEEDS

When establishing the business needs, spend time with colleagues from across the organisation to listen and understand what they would like to see from a new base – what is it about the current environment that works, what doesn’t work so well and what would improve their working environment if only it were possible!

Everyone one I spoke to was really keen to give me their wish lists and as I started to jot their ideas down, some similarities started to emerge, but for some their thoughts varied significantly.    Prioritise the must haves and rationalise the nice to haves and a vision of your new building will start to emerge.

TIP don’t lose those more obscure requests. Whilst on this occasion I couldn’t deliver a building that had an on-site wind turbine, I was able to deliver on the overhead gantry crane!

TIP:  to fulfil everyone’s requirements you would most likely need to commission a bespoke building, so make sure to manage expectations!

Internal Project Team

You can’t succeed on your own so it is imperative that you establish an internal project team.  Working with business managers from across the organisation proved a valuable source of knowledge and support.  Individual managers were allocated areas of responsibility spanning right across the project and each were tasked with identifying what needed to be done , this formed the basis of a project plan.

Example project areas:

·         Property

·         Fit out

·         Process/Systems

·         Health & Safety

·         Quality

·         Marketing

·         People

 

Ensuring the team communicated regularly weekly meetings were held and if on occasion some colleagues were unable to attend it ensured that we kept abreast of developments – or on occasion the lack of!

Select a property

It seems obvious, but finding the right property in the right location and that meets the detailed specification your colleagues have challenged you with can at times feel like finding a needle in a haystack. This is where the word compromise well and truly comes in to play!  Give yourself a sizeable geography in which to search for property – like you, everyone wants it all, so make sure you keep an open mind and research those properties that at first glance you would dismiss as not meeting your criteria.   What you think you need and what you finally agree is ‘the one’ may well prove to be completely different – it did for us!

TIP The more sites I visited the more ideas I collected as to what could work and might be achieved!

 TIP:  Draw up a short list of buildings and compare them to your must have list – is there a property that is starting to lead the way?

TIP:  Engage one of your project team to come with you to revisit your top properties – they will bring a new perspective to things.

TIPIf possible, establish a good relationship with the previous tenant, in our experience they were really helpful in providing information about the building, how it operated and its history!

The legal process can take quite some time, it was certainly longer than we had anticipated; but don’t underestimate this vital element of the journey. It is critically important that your future building has the correct legal foundations in place, so ensure you seek good advice.

With the legal aspects complete we gained possession of the building and we all got a much-needed motivation boost! The project team visited the site to design the layout and agree what renovations needed to be made.  The vision was taking shape!

Renovations and installations!

Be ready – This is an extremely busy period.  Obtaining quotes, liaising with contractors, arranging building services are just a handful of the tasks at hand. I found that having someone local to the site with good local knowledge is hugely helpful.  Access can be required at various times of the day and sometimes night but with the building not yet fully functional requires a lot of coming and goings to site.   Ensure the alarm systems are serviced and activated and site security implemented.

TIPTake your readings!  Ensure you capture the utility readings on day one and contact the associated providers to inform them you are the new tenants submitting the readings.  This should be a straightforward exercise I can assure you it isn’t, so be warned!

 

For those who may be undertaking a similar process either now or in the future, I wish you every success.  My recommendation is to ensure you appoint the right person to lead the project, a person who loves to do detail, enjoys multi-taking, doesn’t mind getting their hands (very) dirty, and has the patience of a saint and most importantly a good sense of humour!

BSRIA North is proud of what has been achieved and we forward to welcoming you through our doors – please visit us any time!

TRANSFORMATION OF THE OFFICE

 

 

 

 

 

 

 

Introducing….BG71/2017 Building Services Reports

This blog was written by Richard Tudor, Technical Director at WSP

Anyone involved in technical work can appreciate the challenges presented when trying to communicate their ideas, information, proposals or recommendations to others.

To be effective an engineer must develop skills in the preparation of all types of communication and the ability to write clear, concise reports is an asset for any designer.

A designer must be able to translate engineering solutions and design intent into an understandable written form in such a way that the reader, often non-technical or with little building services knowledge, can understand. The need to communicate with clients and other professionals effectively is essential.

A report is a form of communication that is written for a specific purpose and aimed at a particular audience. There are various types of reports utilised in the industry which are used for different purposes that can range from communicating design to expert witness reporting.

BG71/2017 Building Services Reports explores various types of reports with the aim to:

  • provide guidance in promoting consistency through common report definition
  • provide an aide-mémoire by outlining report considerations
  • improve efficiency in report preparation
  • help develop technical writing skills

The report types covered include feasibility, thermal modelling, design stage, technical due diligence and expert witness.

For each type of report covered, the guide aims to outline what that report should achieve, in addition to highlighting key points and guidance to assist the reader in developing their own particular report structure. The appendices propose considerations, levels of information and typical headings for some of the reports with the aim to provide an aide-mémoire to further assist the reader. The considerations are not exhaustive and the final content of reports, together with headings, will vary according to the type of project and its particular requirements.

The design process involves the preparation of various types of reports with different objectives and purposes in conveying information.  It is important that any design stage report provides the correct level of information at the right point in the project delivery process and conveys technical information in a clear and easily accessible format.  The guide examines design reports prepared at RIBA stages 2 and 3 and proposes key aims for each report to assist in understanding their objectives and considerations with respect reporting at these design stages.

Every company has a different style but the ability to plan and prepare reports in an efficient manner can often save time and avoid unnecessarily lengthy documents. The guide looks at the elements of planning a report to help facilitate the efficient preparation of documents and outlines the key activities at the various stages of the planning process.

For any report, the information provided should be easy to find and written in such a way that the reader can understand it. The guide explains the common components of a typical report to assist in structuring a document together with planning the content and organising information.  Comparisons can be very important in technical reports and the guide looks at the ways comparisons can be organised to help readers understand a topic better, as well as assisting the decision process of choosing one option out of a group.

The publication provides a useful guide in developing technical writing skills, with tips and key considerations for report preparation.

 

Richard Tudor

Richard Tudor is a Senior Technical Director with WSP and has been an integral part of their Group Technical Centre since 1999. His responsibilities include technical quality, specification development, knowledge management, technical training, designing for safety, technical support and improving project delivery.

Richard is a building services engineer with over 43 years’ experience in the industry covering design and project management spanning most industry sectors.

For many years’ he has participated in various BSRIA publication steering groups and is currently a member of the BSRIA publications review panel.

In addition Richard has authored several BSRIA publications and lectures on Safety in Building Services Design, a one-day training course.  BSRIA publications Richard has authored include:

 

 

 

Construction quality could be catching up with other industries

This blog was written by Lynne Ceeney, Technical Director at BSRIA

If you order steak and chips at a restaurant, but the waiter delivers hake in strips, you would be rightly annoyed. Instinctively you blame the waiter, but it could have been a problem with the ordering software, a misreading in the kitchen or just the wrong dish being picked up.  Whatever, you would send it back – it is not what you ordered.   In new buildings, this happens all the time.  Poor communication during the briefing, design and construction process, and poor handover and operation leads to a building that doesn’t deliver the performance the client thought they had ordered in the first place.  Unlike a dinner, it’s not practical to send a building back and wait for the one you asked for to be delivered.  Instead extensive snagging lists, expensive defect resolution and defensive “best we can do” fixes by the facilities team are often used to try and get the building closer to its intended performance – and “closer” is usually the best that can be achieved. The owner and occupier end up with a disappointing building, and the designers and construction company are left with a disappointed client.  The blame chain spreads, and it’s hard to pin down the fault.

The impacts run way beyond disappointment.  Occupier discomfort impacts staff retention, and the increased societal focus on wellbeing indicates that employees will expect higher standards from their place of work.  Poor commissioning or confusing controls mean building systems that don’t work properly and need constant attention or premature replacement, as the uncomfortable working conditions impact on worker productivity.  Inefficient buildings use more energy requiring more cash and causing more carbon emissions.  In fact buildings contribute 37% of UK green house gas emissions from gas heating, and consume 67% of the electricity used in the country.  It’s no wonder that larger investors are taking much more of an interest in the sustainability and performance of buildings rather than just the upfront capital cost.  Good buildings are an asset, poor buildings become an expensive liability in terms of operating costs and void periods. Competitive property markets compound this situation.

With a typical building having a life expectancy of at least 60 years, we are building in problems for this generation and the next.  We’re not great at mass retrofitting, (and the high demand for additional building stock means a capital, skills and material shortage) so we need to get it right first time.  Effective management tools with this aim abound in other sectors, for example DRIFT, (Doing it Right First Time), Six Sigma, LEAN and Zero Defects.  We see the approach being used in food manufacture, car making, pilot training, and patient healthcare, to name but a few sectors.  So what about construction?

Soft Landings is the equivalent tool for the construction sector.  This tried and tested process was developed to help to produce better performing buildings – not necessarily exceptional in performance, but buildings that deliver in operation what they were designed to do in the first place.  Getting a building right requires a shared focus on operational performance of the building right from the start, and throughout the design, construction and commissioning process.  The use of Soft Landings delivers this shared focus, improving communication and collaboration between all parties in the building delivery chain.  It helps everyone to avoid the pitfalls that diminish operational building performance. It fits with RIBA stages, integrates into existing construction processes, and does not require a specific building procurement model.  You can download Soft Landings guidance from the BSRIA website .

However it is always helpful to find out about real world experiences, and to talk to others who are using Soft Landings to help them to produce better buildings.  With this in mind, BSRIA have organised the 2017 Soft Landings Conference (June 16th 2017 at RIBA, Portland Place, London W1B 1AD). You will hear from a range of speakers from different parts of the construction process – including clients – who will explain how they have used Soft Landings in their projects, and the value that it has delivered for their buildings.  You will also hear their hints and tips, and there will be plenty of time to ask questions and take part in discussion both in conference and over lunch.

It’s time for the construction industry to catch up with other industries in terms of quality, to produce buildings that perform as expected, through a delivery process that gets it right first time.  Soft Landings is a process that helps the delivery chain to do this.  For more information on the conference please contact our Events Manager, Tracey Tilbry.

 

The Lyncinerator on… Bathroom taps

This blog was written by Lynne Ceeney, Technical Director at BSRIA

Don’t get me started.  We’ve all been here.  You’re out and about, maybe having a meal, going shopping or visiting offices, and you have to use an unfamiliar bathroom.   You approach the basin to undertake that most basic of human hygiene tasks, washing your hands.  And looking around, you realise you have absolutely no idea how to turn on the tap…  and in many cases, you have absolutely no idea where the tap is.  If you are lucky, there is an obvious spout from which the water should come out.  However in many cases, the detective work starts here – the spout might not actually be in a tap, it might be be under the shelf, or embedded in the granite.  Second detective task:  getting the water to flow.  Sometimes it is a button.  Sometimes a toggle. Sometimes something to turn.  Sometimes a sensor – which sometimes works.  Let’s assume you have managed to actually get some water to use, and you can start on your third detective task – getting the temperature you want.  Often helpful “danger” notices warn you that the hot water is hot (really Sherlock??  – well, I guess putting up a notice is easier than sorting out the supply issue). Clearly many, tap designers are a fan of puzzles, and assume you are too.  No clues to indicate how to adjust temperature, no blue or red symbol to help you out.  You have to eliminate the suspects until you find a way that works.  And after the application of a lot of thought and puzzling, hopefully you get to wash your hands.

Presumably someone thought these taps look great – but ‘clean lines’ are triumphing over clean hands. Whilst this functional obfuscation is frustrating for the average user, it is nigh on impossible for people with learning disabilities, confusion or dementia, something that we can expect to see more of in an aging population. It leads me to wonder what the tap designers and those who chose the bathroom fittings were thinking about.  Probably not the user.

Why should you have to solve a series of problems in order to undertake such a basic operation as washing your hands?

Surely the purpose of designing a functional object is to get it to work, and that requires a combination of form, technology and human behaviour.  The human / technology interface is a critical element of design.  It is irritation with taps that has prompted my thinking, but it led me to wider thinking about the design of buildings and their systems, and a series of questions which maybe we should use as a checklist.

Human error is cited as one of the problems leading to poor building performance, but isn’t it really about design error?  Are we more concerned with what it looks like rather than how it will work?  Are we introducing complexity because we can, rather than because we should?  Why don’t different systems work with each other? Are we thinking about the different potential users?  Do we understand the behaviour and expectations of the people who will use the building or are we expecting them to mould to the needs of the building? Is design that confuses sections of the population acceptable?   Are we seeking to enable intuitive use or are we setting brain teasers? Do we care enough?

We should wash our hands of poor design.  But once we have washed them we have to dry them.  And you should see this hand dryer.  Don’t get me started…

Lynne Ceeney will be contributing a bi-monthly blog on key themes BSRIA is involved in over the next year. If there’s something that ‘gets you started’ let us know and we may be able to draw focus to it in another blog. 

Contractors can’t build well without clients that lead

Did anyone see the recent news story on the Edinburgh PFI schools with structural failures? In 2016 we shouldn’t be constructing buildings with feeble brickwork. We have Victorian and Edwardian schools that have been standing for over 100 years without these problems. More ironically we have 1960s CLASP schools – built on a budget with the flimsiest of constructions – still standing and performing their role well after their sell-by date. OK, they’re usually freezing in winter and boiling in summer, with asbestos in places a power drill shouldn’t reach, but at least they’re still standing.

The reasons for these high profile failures are easy to park at the door of the PFI process. One can blame cost-cutting, absence of site inspections, and lack of quality control. Some even say that the ceding of Building Control checks to the design and build contractor is a root cause: site labour can’t be trusted to mark their own exam paper when their primary interest is to finish on time and under budget.

Some commentators blame the design process, and bemoan the loss of days of the Building Schools for the Future programme when design quality was overseen by the Commission for Architecture in the Built Environment (CABE). The erstwhile CABE may have tried to be a force for good, but project lead times become ridiculously long and expensive. And would it have prevented structural failures? Hardly likely.

The one cause of these failures that doesn’t get enough press coverage is the important client leadership and quality championing. It can be argued that clients get what clients are willing to pay for, and there’s no industry like the construction industry for delivering something on the cheap. The cost-cutting, the emphasis on time and cost at the expense of quality control – all this can be pinned on a client base that does not lead, demand, oversee, and articulate what it wants well enough to prevent the desired product being delivered at the wrong level of quality at the wrong price.

Which means that clients have to a) get wiser on what can go wrong, b) get smarter with their project management, and c) articulate what they want in terms of performance outcomes. Truly professional designers recognise this, and are prepared to guide their clients through the shark-infested waters of writing their employers requirements. But once that is done the client’s job is not over. They can’t simply hand the job over to the main contractor and turn their back until the job is complete. They need to be closely involved every step of the way – and keep key parties involved beyond practical completion and into the all-importance aftercare phase.

Soft Landings provides a chassis on which focus on performance outcomes can be built. The chassis provides the client with a driving seat to ensure that standards are maintained, along with a shared construction team responsibility to make sure the building is fit for purpose.  The forthcoming BSRIA conference Soft Landings in London on 23 June is a good opportunity to learn how this can be done. It will focus on workshops where problems can be aired and solutions worked through. It will be led by experts in the field who can suggest practical solutions for real-world projects. Why not book a place for you and a client? For more information visit the BSRIA website. 

A BEMS is the key to unlocking a more sustainable and resilient data centre

Sam Fitzgerald, Key Account Manager at Trend Control Systems

Sam Fitzgerald, Key Account Manager at Trend Control Systems

Sam Fitzgerald, Key Account Manager at Trend Control Systems, explains the functions of a Building Energy Management System (BEMS) and the vital role this technology can play in today’s state-of-the-art data centres.

In order to minimise the potential for downtime, data centres must be resilient, compliant with all relevant standards and operating procedures, while at the same time minimising overall energy consumption. BEMS have the proven ability to maintain the high levels of uptime and energy efficiency that are demanded by users by proactively monitoring, analysing, understanding and improving a data centre’s building services infrastructure.

Under control

A BEMS monitors, manages and controls building services and plant by ensuring that it operates at maximum levels of efficiency and reliability. It does this by maintaining the optimum balance between conditions, energy use and operating requirements.

By controlling an entire estate’s building services from a centrally managed location, it enhances the ability to interact with, and improve the quality of, the data centre infrastructure. Intelligently understanding and responding to patterns of usage means that, for example, cooling can be fully optimised and lighting turned off in unoccupied areas.

Being aware of the way a data centre works makes it possible to determine which best practices to implement in order to protect IT assets, while minimising costs and the potential for downtime.

Energy levels

It is estimated that data centres account for around three per cent of the world’s total energy consumption and with growing use of the cloud and the rise of the Internet of Things, that figure is only going to go up. Furthermore, according to the Digital Power Group, the sector uses 50 per cent more energy than global aviation and is now considered one of the major sources of global CO2 emissions.

Efficient use of energy is clearly no longer an option and there is a growing raft of legislation and regulation that is specifically designed to ensure that energy consumption and carbon emissions are measured accurately, and that any applicable data is available for analysis.

Given that up to 84 per cent of a data centre’s energy consuming devices can be directly under its control, a BEMS is without doubt the most effective way to gain a true understanding of where savings can be made, monitored and sustained. A properly specified, installed and maintained BEMS will ensure that building services operate in strict accordance with demand, which will also help to deliver the lowest power usage effectiveness (PUE) rating.

Far from being ‘fit and forget’, a BEMS can evolve with the building over a period of time. It must be regularly maintained and, where necessary, adjusted to ensure that it provides the best possible quality of service.

The bigger picture

Sustainability isn’t just about energy usage though. A BEMS can also limit wear and tear on plant equipment by using it more efficiently and making sure that any maintenance issues are highlighted.

In addition, a properly configured BEMS will be scalable, future proof and full backwards compatible. A system that allows easy upgrading and reconfiguration is always preferable – not all systems are the same and the costs of installation can vary depending on the protocol used.

Trend is committed to ensuring the backwards compatibility of its technology. For example, its new IQ®4 controllers are able to communicate with the very first device that it manufactured way back in 1982. The IQ®4 modules are also interchangeable for additional future proofing, scalability and system longevity – all of which can protect the financial investment in a BEMS.

Always on

According to research carried out by Emerson Network Power and the Ponemon Institute, the cost of data centre downtime is just over $7,900 per minute. Total data centre outages in 2013 averaged a recovery time of 119 minutes, equating to about $901,500 in total cost.

As well as being incredibly inconvenient, it’s the damage to mission critical data, impact on organisational productivity, harm to equipment, legal and regulatory repercussions and lost confidence and trust among key stakeholders that can prove difficult to recover from. A data centre should therefore look to build resilience into its operation via a BEMS, minimising any risks associated with situations such as plant failure or environmental conditions falling outside acceptable parameters.

Alarms can be programmed into a BEMS, so that in the event of equipment malfunction the problem can be identified and rectified as quickly as possible. For instance, on an air-handling unit, if a flow sensor highlights that airflow is decreasing it is likely to mean that a filter is blocked. Addressing problems like this early on will ensure that temperature conditions in a data centre remain within those agreed in a service level agreement (SLA), minimising the possibility of penalties. A BEMS can also minimise the amount of time required to carry out such tasks by either automating them or undertaking comprehensive data acquisition.

Rules and regulations

Compliance with statutory legislation, key performance indicators (KPIs) and SLAs are fundamental to the success of any data centre.

A BEMS provides overall visibility of plant energy use and allows personnel to see in real time what’s happening within a facility, therefore helping to make sure that equipment stays within a manufacturer’s specified temperature and/or humidity range. In addition, details of data centre conditions on a 24/7 basis can be logged to provide a full audit trail.

A growing number of data centre operators are also choosing to put an energy management system (EnMS) in place to achieve compliance with ISO 50001 or the standards used to measure data centre efficiency developed by The Green Grid. Having a BEMS in place will help demonstrate a desire to continually improve a data centre’s energy efficiency.

Therefore, the requirement for this technology in data centres is only set to increase.

For further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com.

Twitter | LinkedIn | Google+ | YouTube

%d