COP 21 – Success or Failure

This blog was written by Richard Hillyard, a Senior Environmental Consultant

This blog was written by Richard Hillyard, a Senior Environmental Consultant

Well, we have a climate change agreement for 2020 and beyond in the Paris Accord, approved this weekend.  But is this an adequate level of progress needed to seriously tackle the problem of climate change?  Compared to 6 years ago and the utter failure in Copenhagen, first glance suggests yes, but it’s not perfect.

Two weeks ago leaders from around the world gathered for probably the most important and significant international government conferences of our time, COP21. Prior to these talks, Non-Governmental Organisations (NGO’s), campaigning organisations, environmentalists and individuals from all over the world took to the streets to protest and generate an atmosphere of urgency for a strong positive agreement to be achieved.

COP21 started with an inspiring speech of HRH Prince of Wales calling to arms the politicians of the world to take responsibility and deliver an agreement that will start the progress to reduced CO2 emissions and planetary stability. “On an increasingly crowded planet, humanity faces many threats, but none is greater than climate change. It magnifies every hazard and tension of our existence… It threatens our ability to feed ourselves, to remain healthy, and safe from extreme weather, to manage the natural resources that support our economies, and avert the humanitarian disaster of mass migration and increasing conflict.”

This was followed by leaders of each country all making the same points, using strong rhetoric, all pointing out the obvious and what the informed already know.  The rhetoric from the politicians had a passion and sincerity on a level that I had not heard before.  Could Paris and COP21 be the success the world and its people need it to be?

Barack Obama, a driving force in these discussions, determined to leave behind a Presidential legacy before he steps down, not worried about re-election stated “the future is on that we have the power to change – right here, right now… One of the enemies we will be fighting is cynicism – the notion that we can’t do anything about climate change” urging a “common purpose [for a] world that is not marked by conflict but by co-operation”, concluding “Lets go to work.”

One of the few blemishes being David Cameron stating, “what would we say to our grandchildren if we failed. We would have to say it was too difficult, they would reply, well what was so difficult?… How can we argue that it’s difficult when in London alone there’s 5 trillion of funds under management and we haven’t already begun to generate the private finance that is possible to help tackle climate change?”

Highly contentious in my view, as it is him and his government that are cutting financial support for clean and renewable energy and instead pushing for shale gas fracking with a very questionable UK energy policy.

Following the opening day, the media lost interest and there was practically no coverage in the mainstream media during the 2 weeks of discussions.  However, from what was available, it was clear there was a hive of activity between the main discussions, informal meetings and fringe campaigns that appear to have been running 24/7. Such is the complexity over agreement of document text, working groups were giving paragraphs to negotiate with each country.

From the start, the French leadership were doing their job perfectly, they communicated a sense of direct urgency and urged the UN to deliver an approved agreement.  In the latter part of  the second week the ‘High Ambition Coalition’ represented, a group of 100 countries, who have been working in the wings secretly for half a year. They helped to push policy agreements through late in the day and on Saturday the world finally got to hear what was agreed.

Not only a commitment to limit global warming to 2oC change, but also to aim to reduce it further to 1.5oC.  This is highly ambitious, yet committed unilateral agreed target., seeing as the world is already heading to a 1oC degree increase in global temperature, limiting it by another half a degree is some target to have agreed.

There are a few challenges with this target, and where the Paris Accord shows cracks, there is no time frame except for ‘second half of the century’ and there are no real mechanisms agreed to ensure delivery of this target, just a promise.  But this is a start, to seriously tackle climate change and hopefully the beginning of releasing the world from its fossil fuel addition.

The agreement includes a legally binding 5-year review of countries targets, and the ability for them to improve their objectives to work towards a low carbon future.   However, 5 years is a long time, long enough for the world leaders not to be in power next time around and be held accountable.  Considering the target of 1.5 degrees, this time frame is not feasible, the reviews are important and are legally binding but should have been annually or every 2 years to ensure targets and commitments are being delivered in a time frame that will actually limit temperature increases. Additionally, how will this be policed and by whom to ensure accountability by nations?

It is also worth noting that the terms ‘fossil fuels’, ‘oil’, ‘coal’, and ‘gas’ do not appear once in the text of the Paris Accord. It looks like corporate lobbying has played a part in the delivery of this final text, which is a real shame as the document should of at least acknowledged the link between the use of these finite resources, their link to GHG emissions and climate change.

Developing countries already receiving financial aid for assisting them with the effects of climate change, all feel they need further support from the countries already causing climate change and in many cases rightly so. This was a contentious area in the negotiations and Saudi Arabia caused a lot of problems due to their economy largely dependent on oil.  But none the less, an agreement of $100bn base line annual aid would be made available.  Many NGOs and commentators believe this to be a significant failure in the process as more help is needed from the developing world to mitigate the effects as well as evolve their economies to the new low carbon energy infrastructure needed.

Listening to the French Foreign Minister Laurent Fabius, their Prime Minister, Francois Hollande, and head of UN, Ban Ki-moon speaking on Saturday morning was for me emotional, are we on the brink something truly incredible as they would have us believe or is the Paris Accord another ‘empty promise’ with no substance to actually deliver?  In the hours and days that have passed, I have had time to reflect and take it all in, I am optimistic and definitely more positive about the international political landscape in this area than I have been for a number of years.  COP21 has managed to get an agreement from nearly 200 countries and this should be applauded long with the target and legally binding reviews.

As Ban Ki-Moon stated, there had to be compromise, no one got 100% of what each country wanted at the start of the negotiations.  I think this is also true from the environmental campaigning, activist and NGO perspective with the agreement not delivering on a level that many believe is required, not going in to detail on how targets would be achieved and not committing enough to help those who will suffer first and most with the effects of climate change.

Wholesale system change doesn’t happen over night, we know this and I believe no matter what would have been agreed in Paris, to many, myself included, it would not have been enough and open for criticism.

Expectation is high and its easy to pick holes in the agreement.  What needs to done, is to reflect and look at the outcomes differently – There is an agreement approved, there is a target agreed, there are legally binding elements and there is some financial aid. I would of taken that 2 weeks ago and I think many others would.

Paris and COP 21 is not the end of the road when it comes to climate change, it is the beginning of the next part of our worlds environmental and climate journey.  The targets are in place, the leadership of the world is agreed that limiting GHG emissions is critical to success.  In fact just 24 hours after COP 21, the UK governments energy policy is already being scrutinised by politicians and media, an early indication of positivity from the Paris talks.

It is now up to us, the environmentalists, the activist and the environmentally considered to continue to drive for delivery against promises, hold those who fail to account and keep on the pressure to those who stand in the way of climate revolution, at the same time, applaud and celebrate where there have been successes and victories. The optimist in me tells me that Paris and COP21 was one of those victories and successes. So let’s embrace it and make it work for our future and the planet.

This blog post was written by Richard Hillyard MSc. Pg Dip. BA(Hons). AIEMA. Richard is a Senior Environmental Consultant at a major international property management company with 13 years environmental and energy experience, including the provision of CRC, ESOS, EED, EUETS compliance, CDP and Carbon Standard Reporting as well as EMS implementation and management. Prior to this, Richard was part of the FM consultancy team with BSRIA and also holds a MSc in Environmental Decision Making.

Just when you thought it was safe to relax about Energy

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Did you hear about the crisis that hit the UK on 4th  November, causing  massive disruption, and provoking outcry in industry, and suddenly sent energy rocketing back up the UK’s political agenda?

You probably didn’t hear this, because the first major threat to the UK’s national grid this winter still left it with a princely 2% spare capacity, sufficient for the National Grid to issue a “notification of inadequate system margin” (NISM), but insufficient to actually disrupt the service.

While this was only the first stage of alert, and while an abnormal lack of wind was an aggravating factor – bringing the UK’s now significant wind generation capacity almost to a halt, one of the mildest starts to November on record may have helped to save the day. As so often in human affairs, a “near miss” is treated as a near non-event. A single “hit” on the other hand could have major repercussions, prompting much more urgent action not just on the resilience of the UK’s national grid, but on how buildings respond to peaks and troughs in energy demand.

BSRIA has been reporting and analysing on Building Energy Management and the issues around it for a number of years now. One of the trends that we have noticed is that over time, more suppliers of building energy management solutions include some form of Demand Response as part of their solution. This enables a temporary reduction in the power drawn by certain services in the building where this does not impact on productivity or well-being.

Our latest review of the global leaders in Building Energy Management showed that almost half now offer demand response, the highest figure that we have seen to date. This includes both the global leaders in Building Automation and Energy Management and suppliers specialising in energy management.

At the same time, energy storage is being taken more serious as a viable and cost-effective way of providing additional resilience and peak capacity, both for energy suppliers and in some cases for consumers. While the UK is still some way from having a thriving market in home energy storage systems comparable to that developing in Germany (where residential electricity is significantly more expensive), it seems quite likely that any significant grid outages will give a boost to the market for battery storage for both residential and non-residential use.

It is still quite hard to judge how probable a major power outage is in the UK this winter. There are already further processes for demand reduction which can be invoked if the situation gets tighter than it did on November 4th. However a coincidence of severe cold with a lack of wind, and unplanned outages at power stations is not inconceivable. And the major strategic initiatives, such as the construction of two new nuclear power plants, will take years to come online.

The UK has got used to ‘living dangerously, and so far has got away with it. But the sensible response to a lucky escape is to learn the lessons, and  not to assume that your luck will go on holding indefinitely.

The very least we can say is that all organisations should be looking at the potential implications of even a short interruption to power supplies, and how they can best mitigate these.

I shall be talking a bit more about BSRIA’s latest research into building energy management and related areas in a webinar on Tuesday 24th November, so I hope that you will be able to join me then

Have you been blackmailed by your Dishwasher? Who Owns the Smart Future?

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Having recently updated BSRIA’s key market studies on Building Automation Controls (BACS), Building Energy Management (BEMS) and Smart Evolution – towards the Internet of Everything, I was struck by a world in a state of flux with  implications for the built environment and technology in general that could be as profound as they are unpredictable.

The structure and make up of our buildings and cities have always been intensely political. The most visible of all human creations, they speak volumes about our abilities, our status and our values and our aspirations. I felt this last month  when viewing the ruins of Ephesus – once the second city of the Roman Empire –  as much as when  I am visiting London or Chicago.

At least since the turn of the millennium there has been a tacit assumption that while technology is the great enabler, much of the change in the way our buildings and cities are designed and organised will be driven by social concerns, typically expressed through politics. In particular, the perception that the threat of climate change requires far reaching action has led to a sustained series of targets, guidelines and regulations to increase both energy efficiency and the use of renewable energy, which naturally impacts on the built environment as one of the biggest consumers of energy.

Is this movement losing momentum? The financial crisis and recession affecting much of Europe, North America and some other parts of the developing world has proved to be the most prolonged since the 1930s. Even countries which appeared to escape the worst impact have since experienced either recession or a dramatic slowdown, including Australia, Canada and of course China.

With falling or stagnating production and rising government debt levels in so many countries, it is no surprise that finances and basic economics have come to the fore. Violent conflicts, especially in the Middle East, Africa  and Eastern Europe, but overflowing into other parts of the world, and in turn fuelling mass movements of refugees and economic migration are also seizing attention in developed countries as well.

All of this has sometimes appeared to leave the “green agenda” somewhat on the back foot. Even in countries like Germany, Austria, Australia and New Zealand, where Green parties have attracted mass support and had a major influence on government, they have seemed to become more marginalised. Britain’s recent elections resulted in a new majority government which has very quickly moved to relax requirements on the energy efficiency of new buildings, and also to phase out subsidies for wind power.

While there is argument as to how far this is simply a question of means, and how much it represents a shift in priorities, there is little doubt that measures to improve energy efficiency or to promote use of smart technology face an uphill path if they cannot also provide a quick pay-back.

Where governments get involved in technology, it tends to be for old fashioned economic reasons.  When  mega-corporations  like Microsoft, Apple, Google and Amazon have been in the spotlight it has mainly been because of accusations of anti-competitive practices or because of their tax policies. Rather less thought has been given to the ways in which companies like these could change the basic structure of society, the balance of power, and the whole environment.

Increasingly these global brands interact directly with a global audience, influencing their behaviour, and in turn being influenced by them. It is no accident that Microsoft, Apple, Google and Amazon, having established themselves as consumer brands, are now all active in the area of smart buildings, ranging from the smart home to, in Microsoft’s case, providing the data crunching to manage and optimise whole campuses of buildings.

Increasingly we can link these to wearable devices and to creators of virtual realities which could radically change our day to day activities and environment. Even the basic blocks  from which buildings are made can have ‘smart’ properties, from ‘self-healing’ bricks to glass that responds dynamically to different levels of light.

threatsWith artificial intelligence already surpassing human intelligence in certain well defined areas – such as chess playing – questions are raised about how far the technology goes, who owns it, and how much power they will have. Even our homes and offices can study, learn and predict our habits and our preferences, in ways that can certainly be useful, but also potentially disturbing.

For over a hundred years there have been fears about the prospect of vital areas of technology  being dominated by a single concern or perhaps a cabal of companies. So far, in practice, it has been innovation itself  that has come to the rescue. Even the most nimble footed technology giants have been caught off-guard by new waves of technology, from IBM, to Microsoft to Nokia. In the case of building technologies the requirements are particularly diverse, and  it is quite unusual to find a country where a single supplier accounts for more than 25%-30% of the market.

Nonetheless as we look to a future where corporations and, by implication, governments have access to information about almost every aspect of where we are, what we are doing, how we feel and what we want and fear.

While you can probably rest assured that your dishwasher probably doesn’t have a motivation to blackmail you (why were those extra glasses washed out at 3 o’clock last Thursday morning?) you can be less assured that it won’t soon have the evidence to do so.

More information about the latest editions of BSRIA’s market studies on Building Automation, Building Energy Management, and Smart Evolution is available here.

Renewable Energy – The Vital Missing Link

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

For years, renewable energy, especially solar power and wind, has offered the tantalising prospect of almost zero carbon energy; tantalising because, even as costs fall, solar and wind are inherently unreliable, especially in temperate climates such as those that we ‘enjoy ‘in regions like Western Europe, and much of North America not to mention most of the developed world.

While a lot of progress has been made in demand response, which manages the energy that we need to match that which is available at any given time, we need a cheap, safe and efficient way of storing electrical power. Up until now, storage of electrical power in particular has been expensive and inefficient, and sometimes a bit scary.

The electrical vehicle market of course already faces this problem in spades. Electric cars are never likely to become main-stream so long as they need to go through a lengthy recharge process every 200 miles or so. It is therefore no surprise that much of the running is being made by manufacturers of vehicle batteries.

Tesla’s announcement that it is moving into the home energy storage market could represent a significant step. Being able to store electrical power not only makes local wind and solar power generation more practicable, it could also be invaluable in the many areas of the world where the grid is unreliable or virtually non-existent.

The biggest barrier, at least initially,  is likely to be the price tag. The 7kW battery which could, for example power a laptop for two days, or run one full cycle of a washing machine, or boil 10 kettles, will cost $3,000 to buy: That’s a very pricey home laundry service, and a frighteningly expensive cup of coffee, especially if you only need to use it occasionally.  The 10kW version represents slightly better value.

At this stage this is surely going to appeal only to wealthier individuals living away from a reliable grid, or those willing to pay to make a green gesture.  However, as with other technology initially aimed at the ‘smart home’ we may well find that much of the demand is actually from businesses. If you are running a business, even a small one, then any loss of service can do you immense damage. If an investment of a few thousand pounds or dollars can help guarantee that you will keep running, then it may well seem like an attractive return on investment.”

A further significant sign is Tesla’s announcement of an alliance with the international Energy Intelligence software supplier EnerNOC, which already has a presence in the USA, Canada, Germany, the UK, Switzerland, Ireland, Brazil, Australia and New Zealand.

Ultimately, success for energy storage in buildings, as in vehicles is likely to hinge on the two Cs: cost and capacity. It is a familiar catch 22 situation with most new and emerging technologies, where the market is waiting for the price to fall, but, other things being equal, production costs will only fall once you have achieved  real economies of scale.  The other factors that could influence the market are regulation, requiring builders or building owners to make provision for storage, or someone willing to take a loss leading initiative.

Safety concerns will also need to be allayed, given problems that have occurred with various types of battery technology, whether in laptops or vehicles. Storing a lot of energy in a very small space, inside the home is always going to raise concerns. And while batteries may offer the most promising option at the moment, other forms of energy storage might prove more effective in the end.

Still, the paradox is that sometimes problems get solved precisely because they are so big. The whole direction that the world is moving in, the growing realisation that we need to slash CO2 emissions,  demands cheap, efficient, safe energy storage. It seems likely that companies like Tesla, along with the other major energy companies involved in energy storage  will continue to concentrate their fire power on this until a viable solution emerges. And for the first few who get this right, or even approximately right, the potential returns are huge.

For then we really will have found the missing link.

Disparate Calls For Disparate Measures

Mark Glitherow

Key Account Manager at Trend

I’m Mark Glitherow, Key Account Manager at Trend, and in this blog I’ll explain why devising and implementing an energy management strategy across a number of disparate buildings needn’t be as daunting as it first appears.

It is obvious that all organisations should be looking to optimise their energy use in order to reduce their carbon footprints and save money. Yet developing a cohesive strategy that will achieve this objective is usually considered easier said than done, especially when a number of disparate buildings are involved. It can be enough to strike fear into the hearts of those charged with such a task, but I’m convinced that by tackling the issue systematically, immediate savings can be made.

Healthcare estates and educational establishments are two prime examples of environments where it is necessary to monitor and manage energy use across buildings of different shapes, sizes and ages. However, the chances are that each building on an estate will have some kind of Building Energy Management System (BEMS) already installed and one of the best ways to review the way they are being used and identify ways to make improvements is through a comprehensive energy audit.

A thorough and professionally conducted audit should ask probing questions, drill down to the finer details and provide guidance about implementing an appropriate new technologies like variable speed drives (VSDs), for example. It is often the case that adjustments can be made to the BEMS during the audit visit itself that will deliver immediate savings, while component parts can be checked to make sure they are working correctly.

Where having an audit really comes into its own though is in its ability to help construct an energy management plan that features a prioritised summary of activities that should be carried out in the short, medium and long-terms. It will help break the project down into ‘bite sized chunks’ that initially focus on gathering utilities based data, identifying wastage, and then prioritising ways to reduce overall energy consumption.

An energy audit can lead to some outstanding results, such as those experienced by Sidmouth Hospital in Devon. During a Trend engineer’s time on-site, improvements to its BEMS settings were made which included altering heating times in intermittently occupied areas from 24 hours a day to only between 06:00 and 22:00, and reducing heating setpoints to 21°C. These relatively simple actions resulted in an estimated £7,000 of savings per annum and a reduction of over 43 tonnes of CO2.

The ability to control and monitor energy use from a central location makes life much easier and one way that this can be achieved is by using an existing IT network infrastructure. As all buildings on an estate will usually be able to ‘talk to each other’ via a campus area network, it should be possible to for the BEMS to operate over this medium.

Rather than putting it off, get the ball rolling by recognising the need for an energy management plan and configuring targets that are achievable. BEMS are at the forefront of the drive towards greater energy efficiency and the cost savings and environmental benefits that can be experienced as a result of investing in and optimising this technology are considerable. You might find that they are in easier reach than perhaps initially thought!

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report –Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Global BEMS Market set to Approach $7 billion by 2020

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

If I could point to a market which is already worth some $3.5 billion, or 3 billion Euros, and which is growing globally at well over 10% per annum, at a time when growth in building automation is a fraction of that, I suspect that many investors and industrialists would bite my hand off. This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Even Europe, which currently accounts for almost half the current Building Energy Management Systems (BEMS) market, is growing at around 10%, while North America has been growing faster, and the rest of the world substantially faster still.

BSRIA forecasts that the global BEMS market will almost double, to more than $6.8 billion by the year 2020. This impressive growth is set to occur in spite of numerous obstacles and uncertainties. This is partly because the factors driving this growth differ from one region to another.

In Western Europe, gas prices almost doubled between 2005 and 2013, while at the same time major economies like Germany became increasingly dependent on import of gas from politically sensitive countries like Russia and the Gulf states, raising the spectre of uncertain supplies.

While the rise in electricity prices has been less dramatic, Germany faces the huge task of fulfilling its commitment to

henry dec2shut down all nuclear power generation by 2022, and the UK faces similar challenges as its ageing, coal-consuming and CO2-spewing power stations reach the ends of their lives, with the ghost of Christmas back-outs rising like a Dickensian spectre to haunt the business and political worlds.

This, and increasingly aggressive environmental targets, at national and EU level, mean that even a Europe which has been in or near recession for more than five years continues to invest in energy efficiency. At the same time, there are signs that organisations at all levels are beginning to understand the full potential of BEMS to save money while meeting obligations and improving the brand.

In North America, the pressure of energy prices has been less relentless, especially since fracking of shale gas has got underway. The movement towards environmental regulation has also been patchier – often varying at local and state level, and has faced more opposition. At the same time, the proportion of energy consumed by office buildings has been rising inexorably at a time when energy used in such areas as transport, industry and homes has been either stable or falling, placing office buildings firmly in the sights of those wishing to make savings. North America also benefits from the plethora of firms developing innovative energy management solutions in both the USA and Canada.

In the rest of the world the picture is extremely varied, from developed countries like Japan and Australia with widespread adoption of BEMS, to major emerging economies like China, where energy has hitherto been seen as rather less of a problem but where the pollution associated with fossil fuels is becoming more pressing.

This growth presents huge business opportunities but also as many gauntlets thrown down. The mainstream building automation suppliers are all active, unsurprisingly, given that the two are so genetically interlinked that building automation was originally widely referred to as building energy management. They can offer the benefit of relatively easy integration of energy management into the building’s wider functioning.

Against this, as virtually every device, appliance and component of a building becomes capable of generating and communicating data, the advent of big building data has opened huge opportunities both to enterprise data and IT suppliers and to an army of smaller newer suppliers of advanced analytics, allowing building managers to predict and pre-empt problems that degrade a building’s energy performance.

Some of these new entrants will fall by the wayside, especially given the level of overlap between many of the offerings, others will be ripe for take-over, but a few are likely to emerge as major disruptive players. In our report we identify the leaders and challengers, along with the niche players and some of the most likely acquisitions. As always, there is an implicit conflict between the move towards integration on the one hand and the desire for innovation on the other, and we look at some of the standards that are emerging to address this.

The prize is most likely to go to companies that can combine innovation in new technologies, and understanding of how a building’s occupants interact with the building, with a deep-seated understanding of how buildings function. This report should help to shine a light on who will be left holding a torch for others to follow if and when the lights really do threaten to go out.

This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Think in £s not kWhs and Start Reaping the Rewards

Steve Browning is Marketing Manager of Trend Controls, a BSRIA member company

Steve Browning is Marketing Manager of Trend Controls, a BSRIA member company

Often considered an unwelcome expense, the truth is that investing in energy saving initiatives offers significant financial benefits, as well as enhancing an organisation’s environmental credentials. I’m Steve Browning, marketing manager of Trend Control Systems and in this blog I will explain how a Building Energy Management System (BEMS) can increase the bottom line.

Although better energy management and the need to reduce carbon emissions are both moving to the forefront of the corporate agenda, they are doing so far too slowly. Rising prices, combined with the increasing scarcity of resources and a growing raft of environmental legislation, means that addressing the issue of how energy is used is no longer just an option, but something that requires serious attention by all businesses.

To put the issue into perspective, the long-term framework outlined by the Department of Energy and Climate Change (DECC) sets out plans for achieving the reductions stated in the Climate Change Act 2008. When compared to 1990 levels, this equates to a reduction of at least 34 per cent by 2020 and at least 80 per cent by 2050. As they are responsible for 17 per cent of the UK’s carbon emissions, the nation’s 1.8 million non-domestic buildings are at the very heart of meeting this challenge.

The government is also ramping up the pressure to comply. In addition to the CRC Energy Efficiency Scheme, the Climate Change Levy (CCL), Air Conditioning Assessments, Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs), earlier this year the Energy Savings Opportunity Scheme (ESOS) was introduced to address the requirements laid out in Article 8 of the European Union (EU) Energy Efficiency Directive.

It means that ‘large enterprises’ employing 250 or more staff, or that have an annual turnover of in excess of around £42m and an annual balance sheet total of around £36m, must complete regular energy audits. The first must be undertaken by 5th December 2015, and then at least every four years.

The government hopes that ESOS will drive the take-up of energy efficiency measures amongst businesses, enhancing their competitiveness and contributing to the wider growth agenda. Furthermore, for organisations wishing to comply with increasingly popular international standards such as ISO 50001, a certified energy management system (EnMS) must be in place.

It is therefore a constant source of bemusement and irritation to me that some organisations aren’t making the obvious correlation between investing in technology that can reduce energy use and saving money. By failing to ensure that energy is being used as well as it could be they are, quite literally, paying the price.

One reason for this could be that for energy bills are often low compared to items such as wages, research and development, and property rental. However, companies must consider other issues such as brand reputation, employee expectations and competitive positioning, while customers expect them to play an active role in reducing the carbon footprint of their operations and products.

Even more frustrating is that in many circumstances it doesn’t even involve a vast capital outlay on new technology – for example, by simply maximising the potential of an existing BEMS energy savings of 10-20 per cent are easily achievable. This could equate to a 0.1-0.4 per cent saving on a company’s total cost base, instantly increasing profitability.

When a BEMS is first commissioned it is configured around an existing building layout and occupancy patterns. These can change over time and incorrectly configured time clocks and setpoints, new layouts, and repartitioning can all lead to poor control and energy wastage.

Failure to maintain a BEMS on an ongoing basis will result in degradation of the building’s energy performance. In order to rectify this, it is advisable to undertake an audit that ascertains what can be achieved and identify any energy saving opportunities. While items such as boilers, chillers, air conditioning, and pumps can be checked to make sure they are working correctly, any maintenance issues to do with the BEMS itself or the building services equipment use can also be addressed.

BEMS providers will be able to offer expert advice on how to enhance the operation of plant by installing items such as variable speed drives. The investment can pay for itself in a matter of months – for instance a centrifugal pump or fan running at 80 per cent speed consumes only half of the energy compared to one running at full speed.

It is critical to achieve stakeholder buy-in for any business enhancement programme and by using a standard Internet browser, software based packages are available that act as a window to a BEMS. It is also possible to access utility meter readings from a BEMS and present a continually updated record of a building’s energy consumption and carbon emissions – showing employees and visitors whether they are on, below or above performance targets.

Hopefully, I have demonstrated that reducing carbon emissions and lowering energy expenditure are closely linked. The savings that can be made through the use of a correctly specified and maintained BEMS are considerable and will help achieve compliance with environmental legislation. My advice is to take action before it is no longer a choice!Trend_RGB SMALL

For further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report –Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Smartening up the City

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

There are some leaps in technology that seize the mind and imprint themselves indelibly on the memory. There can hardly be anyone over the age of 50 who doesn’t recall their grainy view of the first man on the Moon, and people who are quite a bit younger will remember when, say, paying a bill or booking a holiday online was still a novel experience.

There are other changes which, while they are already having far more impact on our lives than the Moon landings, seem to have crept up on us, almost by stealth. The advent of the Smart City looks very much like being one of the latter.

The Seminar Smart Cities and the Internet of Things, which BSRIA attended on 16th July, helped to flesh out some of these. One key factor is of course the sheer all-encompassing variety and complexity and scale of a modern city, as reflected in the technology required to support it. This was underlined by the presentations on the range of “smart” cities, from major building consultants, to companies working closely with utilities, to data analytics companies.

This points to a pluralistic approach where different companies collaborate, each contributing their own particular skills, rather than one where a mega-corporation tries to orchestrate everything.  As one speaker pointed out, the smart car alone is likely to involve motor manufacturers, battery and power specialists, grid utilities, digital IT specialists, and the advertising and public relations industry (interestingly, two of the three first people I spoke to represented public relations companies). And that is before one gets on to the subject of the role of city and national authorities.

While the seminar focussed, understandably, on the elements that comprise the “Internet of Things”, making up ‘the nuts and bolts’ of the smart city, it also convinced me that we need to pay more attention to the wider social, political and economic context.

What makes a city smart? Given the combination of complexity and subjectivity, that is always going to be a hard question to answer. Nonetheless a group of academic institutions did rank 75 smart cities across Europe based on the “smartness” of their approach to the economy, mobility, the environment, people, living and governance.

When I measured the ranking of smart cities in each country against that country’s average income, I was struck, but not that surprised, that there was an almost linear correlation between a country’s wealth, and the ranking of its ‘smartest’ city. Thus at one extreme Luxembourg, easily the richest country in Europe, and second richest in the world, was also judged to have the smartest city. Lowest ranked was Bulgaria, which also had the lowest per capita income of all the countries on the list. Most other countries were in a ‘logical’ position in between.

Smartening up the city

One can of course argue whether smart cities are mainly a cause or a consequence of a country’s wealth. Up until now I suspect it is mainly a matter of richer countries being able to afford more advanced technology, not least because the relative economic pecking order has not changed that much in the past 25 years, i.e.. since before the smart city era really got underway, indeed if anything the countries on the bottom right of our chart have been catching up economically, which could be why countries like Romania, Slovakia and Slovenia are doing better in the smart city stakes than their income might suggest.

Luxembourg is of course unusual in one other significant respect. In terms of size, and population, it is about the size of a city, and is politically and economically very much focussed on its eponymous capital city. This raises a question sometimes posed in other contexts: Is the “city state” making a comeback, and could this have a bearing on the development of the smart city? In this respect it surely speaks volumes that Singapore, probably the closest entity to a city state in the modern world is not only highly productive economically but frequently cited in the history of the smart city, going back to the days when it pioneered road pricing more than a generation ago, and one of the cities mentioned in this seminar.

If you are laying down the guidelines for a smart city then there are clearly advantages in having an authority with the resources and powers of a government, combined with the local knowledge and accessibility of a city.  But given that splitting up the world into hundreds if not thousands of new ‘city states’ does not look like a viable option, what can be done to create a framework in which smart cities can flourish in a way that is responsive to their citizens’ needs?

Even in larger countries, the Mayors of major cities are often heavyweight national figures, enjoying wide ranging  powers. This applies to cities like New York, Berlin, Paris and, more recently London. One of the most interesting developments in Britain is the growing recognition that while London is already in effect a global economic power, other cities have been struggling to keep up. While this problem long pre-dates the smart city, it speaks volumes that, with a general election due next year, all of the major parties are now committing to giving more powers to major cities outside of the capital, possibly with more directly elected mayors.

Given the nature of democratic politics there is still no guarantee that this will happen, especially given governments’ traditional reluctance to hand over power, but with Scotland likely to enjoy greater autonomy even if it votes to remain in the UK, the pressure to devolve more power to cities and regions in the rest of the UK will be that much greater.

Even this would not of itself promote smart cities, but it would mean that city mayors or leaders seeking to promote and coordinate smart city developments, and companies and interest groups looking for partners, would have much more powerful instruments within their grasp.

BSRIA’s Worldwide Market Intelligence team produces an annual report into Smart Technologies. To find out more go to our website

A forward thinking attitude to energy management

Chris Monson, Strategic Marketing Manager of Trend

Chris Monson, Strategic Marketing Manager of Trend

Given that in parts of the world like Europe and North America some 40% of all energy used is consumed by buildings, both companies and wider society are increasingly focussing on the energy performance of their buildings, and how to improve it.

Building Energy Management Systems (or BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance. 

I’m Chris Monson, strategic marketing manager at Trend Control Systems, and I’d like to welcome you to the latest in a series of blogs where I, along with my colleagues, examine the issues affecting the building controls industry and the use of Building Energy Management Systems (BEMS).

It strikes me as somewhat bizarre that in an age where owners, managers and occupiers of commercial premises are under tremendous pressure to operate as energy efficiently as possible, so few developers recognise the long-term value of installing a fully featured BEMS at the construction stage. Such is the value and relevance of this technology, that to my mind it should be considered as important as other elements of the building services infrastructure that are designed in as a matter of course.

BEMS facilitate greater energy efficiency and the cost savings and the environmental benefits that can be experienced as a result of investment in this technology are considerable. A fully integrated solution can have up to 84 per cent of a building’s energy consuming devices directly under its control, offering greater visibility of energy use by monitoring services such as heating, ventilation, air conditioning (HVAC) and lighting.

According to the Carbon Trust 25 per cent of a building’s energy is used in lighting, and it is estimated that around a third of the energy consumed in this way in non-domestic buildings could be saved by utilising technology that automatically turns off lights when space is unoccupied. In addition, air conditioning can increase a building’s energy consumption and associated carbon emissions by up to 100 per cent, making it imperative that its use is tightly controlled.

So why isn’t the design and installation of a BEMS happening in the initial stages of a construction project? I’m afraid that the answer comes down to a combination of cost and lack of foresight. However, to fully understand why these two factors are proving so prohibitive to BEMS implementation, we need to understand a little more about the mind-set of the developer.

Developers tend to fall into two broad groups – there are those that configure buildings for others to inhabit and others who design and build premises for their own use.

When it comes to the former, the main driver is to save costs at the construction phase and little thought is given to the building’s future occupants and how they use the building. As there are no regulations stating that a BEMS must be installed, there’s a strong possibility that it won’t be. However, this lack of forward thinking leads to future occupants having to cope with inadequate visibility and control of their energy usage and, therefore, higher overheads and a larger carbon footprint.

Regarding the second group, it often comes down to the failure of owners to specify the need for a BEMS at procurement stage and make sure that they have systems in place that will maximise the energy saving potential of the building. While this type of developer will also have one eye on the cost of the project, the increased capital costs of installing BEMS is easily countered by the return on investment (ROI), with an average payback of just three and a half years.

Whichever way you look at it, the fact is that on a ROI basis early stage BEMS implementation makes sound economic sense. It can form less than one per cent of the total construction expenditure and energy savings of 10-20 per cent can be achieved when compared to controlling each aspect of a building’s infrastructure separately. The benefits don’t stop there either, as if it is incorporated with smart metering, tariff changes can be used to offer a strategic approach to energy management and control, and the data produced gives clear signposts for potential improvements.

I firmly believe that in the current business climate to construct a new build property without a comprehensive BEMS borders on foolhardiness. Organisations are faced with growing pressure to demonstrate carbon reduction policies and do all they can to lower their energy use.

Despite the controversy surrounding the introduction of the CRC Energy Efficiency Scheme, it is here to stay and is likely to extend its scope to incorporate more businesses in the future. In addition, The Climate Change Levy (CCL), Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs) also affect businesses, while compliance with certification standards such as ISO 50001 put the onus on companies to demonstrate continual improvement in this area.

It should also be remembered that building occupiers are demanding greater visibility and transparency of their energy consumption and need access to data. A failure to meet this demand could mean that prospective tenants decide to go elsewhere.

Standardisation is playing an ever more prominent role and the most significant is EN 15232, which describes methods for evaluating the influence of building automation and technical building management on the energy consumption of buildings. It enables building owners and energy users to assess the present degree of efficiency of a BEMS and provides a good overview of the benefits to be expected from a control system upgrade. The use of efficiency factors means that the expected profitability of an investment can be accurately calculated and I’m pleased that a growing number of organisations are reviewing this document and implementing some of the best practice guidance it offers.

There are those who feel that regulation is the only way to make sure that BEMS are installed at the point of initial construction, although others are reluctant to see the introduction of more onerous legislation on an already pressured construction sector. At this stage I think that regulation shouldn’t be necessary if a long-term approach to energy efficiency is factored in and the benefits of a BEMS are recognised by more developers in the initial stages of a project.

Trend_RGB SMALLFor further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report – Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Buildings – Plugging the Performance Gap

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

What do The Titanic, London’s Millennium Bridge, and The Leaning Tower of Pisa have in common? One answer is that as structures they all failed to “perform” as expected. The Titanic, designed with the latest technology to achieve a success  rate of approximately 100% safe Atlantic  transits, actually achieved a disappointing 0%. The Millennium Bridge, fine and inspiring though it was, failed to take account the consequences of perfectly natural, if little understood, human behaviour – the tendency to walk in sync on a naturally moving structure – with potentially alarming consequences. It had to be radically re-engineered before reopening in 2002.

The Leaning Tower of Pisa, which I was able to climb last month, failed in the most fundamental requirement of most buildings – staying permanently upright – though in some-ways of course this very failure was the secret of its long term success and certainly the main reason that people like me still pay good money to climb it more than 800 years after it first started leaning.

When buildings fail to deliver the intended results, we talk about a “performance gap”. While this can embrace many areas including cost, safety and comfort, we tend to talk about this particularly where energy performance is concerned. This reflects the fact that energy performance is at least ostensibly a goal of most of those involved in the design, construction and management of buildings, and that as energy prices rise and concerns over the impact of greenhouse gas emissions become more acute, the sense of urgency can only increase.

Some of the reasons for this are highlighted in a useful new book “How Much Energy Does Your Building Use?” by Liz Reason (Dō Sustainability) whose launch I attended in London last week. The book highlights examples of buildings initially hailed as energy efficient which spectacularly failed to live up to their reputation. It also shows how these failings can emerge at any stage of the building process from initial planning and design through construction, commissioning and occupation and operation, and considers how these problems and shortcomings can best  be addressed and avoided.

What I want to focus on here is one central question: How do we know how our building is actually performing, let alone how it is likely to perform in future? The key here is information, which needs to be collected and then analysed, not just to show us any obvious performance issues but also point to potential problems or just unusual patterns that deserve further investigation and explanation.

This points to a central role for Building Energy Management Systems (BEMS). These are offered by a wide range of suppliers, including most of the major Building Automation providers, and present wide ranging functionality. Central to almost all of them is the collection and analysis of data, sometimes in prodigious volumes. A well implemented BEMS enables you to keep track of what your building is actually doing, irrespective of what it was intended or expected to achieve.

'Performance gaps' in buildings are nothing new...

‘Performance gaps’ in buildings are nothing new…

Another way in which the performance gap points towards BEMS is that while the value of BEMS has been widely recognised for some time in the retrofit market, especially for the huge mass of buildings constructed in 1960 – 1990, there has sometimes been a tendency to assume that more recent buildings, being generally built to much higher standards, can, to a degree, “look after themselves”. If a building really is “zero energy” then what is there to manage, at least from an energy point of view?

However, if there are basic failings in the design itself, the way it has been implemented or commissioned, or the way the building is operated in relation to its actual usage, then the performance gap can loom up large and un-ecological as a fire-breathing dragon. Sometimes the failings can be obvious: a stiflingly uncomfortable office can jump up and hit you as much as a wildly wobbling bridge. But in other instances, energy wastage is less obvious. Real performance issues emerge only when the actual data is collected and analysed over time.

This month BSRIA publishes the latest update of the study “BEMS Market 2014 Q2 :Developments in Europe and the USA”, a study which, with its regular quarterly updates, helps you to keep up to speed with the newest developments in this exciting and important area.

%d bloggers like this: