Contractors can’t build well without clients that lead

Did anyone see the recent news story on the Edinburgh PFI schools with structural failures? In 2016 we shouldn’t be constructing buildings with feeble brickwork. We have Victorian and Edwardian schools that have been standing for over 100 years without these problems. More ironically we have 1960s CLASP schools – built on a budget with the flimsiest of constructions – still standing and performing their role well after their sell-by date. OK, they’re usually freezing in winter and boiling in summer, with asbestos in places a power drill shouldn’t reach, but at least they’re still standing.

The reasons for these high profile failures are easy to park at the door of the PFI process. One can blame cost-cutting, absence of site inspections, and lack of quality control. Some even say that the ceding of Building Control checks to the design and build contractor is a root cause: site labour can’t be trusted to mark their own exam paper when their primary interest is to finish on time and under budget.

Some commentators blame the design process, and bemoan the loss of days of the Building Schools for the Future programme when design quality was overseen by the Commission for Architecture in the Built Environment (CABE). The erstwhile CABE may have tried to be a force for good, but project lead times become ridiculously long and expensive. And would it have prevented structural failures? Hardly likely.

The one cause of these failures that doesn’t get enough press coverage is the important client leadership and quality championing. It can be argued that clients get what clients are willing to pay for, and there’s no industry like the construction industry for delivering something on the cheap. The cost-cutting, the emphasis on time and cost at the expense of quality control – all this can be pinned on a client base that does not lead, demand, oversee, and articulate what it wants well enough to prevent the desired product being delivered at the wrong level of quality at the wrong price.

Which means that clients have to a) get wiser on what can go wrong, b) get smarter with their project management, and c) articulate what they want in terms of performance outcomes. Truly professional designers recognise this, and are prepared to guide their clients through the shark-infested waters of writing their employers requirements. But once that is done the client’s job is not over. They can’t simply hand the job over to the main contractor and turn their back until the job is complete. They need to be closely involved every step of the way – and keep key parties involved beyond practical completion and into the all-importance aftercare phase.

Soft Landings provides a chassis on which focus on performance outcomes can be built. The chassis provides the client with a driving seat to ensure that standards are maintained, along with a shared construction team responsibility to make sure the building is fit for purpose.  The forthcoming BSRIA conference Soft Landings in London on 23 June is a good opportunity to learn how this can be done. It will focus on workshops where problems can be aired and solutions worked through. It will be led by experts in the field who can suggest practical solutions for real-world projects. Why not book a place for you and a client? For more information visit the BSRIA website. 

Ideas competition – How would you make buildings better?

PrintBSRIA and Designing Buildings Wiki are giving you the chance to win £500 of BSRIA membership, training or publications and to be featured in Delta T magazine by suggesting ways that buildings can be made to perform better. Gregor Harvie, co-founder of Designing Buildings Wiki explains why.

The UK government’s commitment to progressively reduce carbon emissions compared to 1990 levels is broadly in line with the COP21 goal agreed in Paris last year for keeping global warming well below 2 degrees centigrade.

But the Climate Change Committee has reported we are not on track to meet the fourth carbon budget, which covers the period 2023-27, and that meeting the 2050 target, a reduction of more than two thirds compared to today’s levels, will “…require existing progress to be supplemented by more challenging measures.”

construction emissions The construction industry generates or influences 47% of UK carbon emissions, and 80% of those emissions are from buildings in use. So unless the performance of buildings is improved, we will struggle to meet our carbon reduction commitments or the COP21 goal.

The tightening of the building regulations is intended to help deal with this. But figures from Innovate UK’s Building Performance Evaluation Programme have revealed that the carbon emissions of the 76 homes assessed were 2.6 times higher than their building regulations calculations, and emissions of the non-domestic buildings were 3.8 times higher.

And of course the building regulations do little to improve the existing building stock. Its estimated that around two thirds of the housing that will be occupied in 2050 has already been built.

emissions target v actualIn fact, our actual energy consumption has changed relatively little since the 1970’s, and the reduction in carbon emissions achieved to date has largely been the result of a shift away from coal powered generation. Now that the low hanging fruit have been taken, the task gets harder.

Couple this with a population expected to rise from 65 million now to around 77 million by 2050, and we have a problem.

So what can be done?

BSRIA and Designing Buildings Wiki have launched an ideas competition asking ‘how would you make buildings better’.

The challenge requires outside the box thinking to come up with radical ideas for reducing the emissions of buildings in use. Tell us about those innovations you think of in the middle of the night and the solutions to the world’s problems you only come up with after a few hours in the pub. Whether you think the answer lies in the adoption of smart technology, better regulation, on-site generation, monitoring and feedback, or more drastic measures such as carbon rationing or a contractual requirement for buildings to achieve design standards. The more innovative and far-reaching the idea the better.

The competition is very simple to enter. You don’t need to write a long essay, your idea might only take a paragraph, or even a sentence to explain.

To enter, go to the ‘Make buildings better’ page on Designing Buildings Wiki 

The winner will receive £500 worth of BSRIA membership, training or publications, and along with 4 runners-up, will be featured in the July edition of BSRIA’s Delta T magazine and on Designing Buildings Wiki.

The competition closes on Wednesday 18 May.

Architect Dr Gregor Harvie is co-founder of Designing Buildings Wiki, a free, cross-discipline knowledge base for the construction industry written by its users. It is home to more than 3,200 articles and is used by more than 10,000 people a day. Designing Buildings Wiki is supported by BSRIA, CIOB ICE, BRE, RSH+P, Buro Happold and U+I Group.

Post Occupancy Evaluation: operational performance of a refurbished office building

This blog was written by Dr Michelle Agha-Hossein BEng (Hons), EngD, Sustainable Building Consultant for BSRIA's Sustainable Construction Group

This blog was written by Dr Michelle Agha-Hossein BEng (Hons), EngD,
Sustainable Building Consultant for BSRIA’s Sustainable Construction Group

My Engineering Doctorate study aimed to investigate how and to what extent office building refurbishment can help to improve occupants’ satisfaction, perceived productivity and well-being while optimising building’s operational performance.

A case study approach and a “diagnostic” post-occupancy evaluation style of framework were adopted in this study to evaluate the performance of a recently refurbished 5-storey office building in detail and find opportunities to reduce the gap, if any. The study divided the workplace’s environment into three categories: ‘physical conditions’, ‘interior use of space’ and ‘indoor facilities’. Employee surveys and interviews revealed that interior use of space was the most important aspect of the building influencing occupants’ perceived productivity, well-being and enjoyment at work (happiness) while the improvement of the indoor facilities had no significant effect.

The study also concluded that issues with the physical conditions (such as noise and temperature) causes negative effects on perceived productivity but improving this aspect to a higher level than it is required would not necessarily increase perceived productivity. In contrast, improving the interior use of space aspect of a workplace would increase employees’ perceived productivity proportionally.  These results, however, should be considered with cautious as employee’s satisfaction surveys and interviews revealed that employees’ levels of expectation might have affected their levels of satisfaction with their new work environment.  This could cause some bias in the results of buildings’ performance evaluation. A potential

Old working environment

Old working environment

solution to this issue is to measure occupants’ expectations for their future workplace at the design stage to try to fulfil these expectations as much as possible. How well the new work environment met occupants’ expectations is another factor that should be measured at the post-occupancy stage.

It was also noted that the occupants density at the building was low at the time of the study (17.7m2/person) and that the space was not fully and effectively utilised and more than 50% of the workstations were often not in use. The link between improving space utilisation and the building’s energy consumption as well as its occupants’ perceived

New working environment

New working environment

productivity and well-being merits further investigation. These results are important in the projects where increasing productivity is a key and the budget is limited.

In terms of energy performance and CO2 emission, it was revealed that the actual emission of the building was three times more than the design target. Most of the low cost opportunities identified to reduce the gap were related to the building management and control as well as occupants’ behaviour. I will be doing a webinar very soon on simple energy efficiency tips related to building management and control and occupants’ behaviour. Watch BSRIA’s website for more details about this webinar. 

BSRIA Residential Network launch

saryu2

This blog was written by Saryu Vatal, Senior Consultant and Researcher for BSRIA Sustainable Construction Group

The BSRIA Residential Network was launched on the 11th of September, kindly hosted by the Wellcome Trust and well attended by over 50 delegates, comprising of both members and invited guests.  Ian Orme Business Manager for the Sustainable Construction Group welcomed the delegates and introduced briefly the intention of the network and how BSRIA would like to engage with all stakeholders to help make residential development better.

The event was chaired by Richard Partington of Richards Partington Architects, architect advisor for the Zero Carbon Hub and co-chair of the steering group for their Performance Gap project.

The day started with a summary of the current policy context for energy efficiency standards in new homes and challenges and opportunities for low energy retrofits.

The recently concluded Performance Gap project for the DCLG provided a starting point for discussing issues that impacted new build residential developments. For this project, an extensive evidence gathering and review exercise was carried and over 60 issues were identified as contributing to the gap between the designed and measured energy use in homes.  Of these the ones prioritised for action and further research, along with the shortcomings in skills and knowledge highlighted through the end-to-end process review of over 20 new developments,  formed the core of the Hub’s recommendations to the Government.

Rick Holland was present to give an update on the Government’s continued support for funding research into construction processes via Innovate UK (previously Technology Strategy Board), both for domestic and non-domestic buildings.

A major programme from this funding stream looking at Building Performance Evaluation is coming to a close at the end of September and early stage findings from meta-data analysis were presented by Ian Mawditt of Fourwalls.  This focused on the common issues found with the design, installation and operation of MVHR systems and data from whole house co-heating tests. The final findings will be disseminated via Innovate UK and will include information from all projects across the seven funding tranches.

The analysis of key design specifications that would impact the performance of the mechanical ventilation systems raised some interesting observations about common assumptions made at early design stages.  Common themes from the commissioned air flow rates were also discussed.  The performance of homes built to Passivhaus standard was notably better, which emphasised the importance of process control on site, but also highlighted the fact that, when needed, the industry was able to deliver a high quality product (homes).

The presentations of the day concluded with a summary of how BSRIA would like to engage with its members to try and address various shortcomings identified through research.  Members are invited to put forward areas where there is a need for additional support, in the form of training, guidance and impartial technical expertise.

Calculator leaned on a little house with red roofA panel discussion was facilitated by the event chair in which a range of topics were discussed.  These included issues around the effective design, installation and modelling of district heating in residential and mixed use schemes and variations in standards and assumptions between the EU and the UK.  Ashley Bateson was able to provide an update on standards being developed by CIBSE.

The conflict between supporting innovative technology and the confidence in product and performance data to allow these to be accepted into mainstream and within compliance tools was also highlighted as an area of concern.

The impact of users on the actual energy performance in homes has not been included in some key research projects although in reality this has significant impact.  While this lies beyond the scope of a developer’s influence, key decisions about the complexity of services, controls interface and handover procedures all contribute towards the usability of homes.  Instances of how internet based tools and were successfully employed in some projects to engage with occupants to develop a feedback and learning mechanism were highlighted.

There were concerns voiced about the problem of overheating in new and newly refurbished homes, especially when dealing with vulnerable occupant groups like the elderly.  The Zero Carbon Hub are working on a project looking at the evidence and aim to help develop the assessment standards and methods for evaluating and mitigating risks in new homes.

BSRIA sees itself well-placed to engage with its members and the wider industry to help address the various shortcomings and areas of concern highlighted.  Subsequent network events have been planned to focus on specific topics in detail and we are seeking feedback from members to help structure our efforts in the most effective and useful manner.

Presentations from all speakers can be found on the networks page of the BSRIA website.

Buildings – Plugging the Performance Gap

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

What do The Titanic, London’s Millennium Bridge, and The Leaning Tower of Pisa have in common? One answer is that as structures they all failed to “perform” as expected. The Titanic, designed with the latest technology to achieve a success  rate of approximately 100% safe Atlantic  transits, actually achieved a disappointing 0%. The Millennium Bridge, fine and inspiring though it was, failed to take account the consequences of perfectly natural, if little understood, human behaviour – the tendency to walk in sync on a naturally moving structure – with potentially alarming consequences. It had to be radically re-engineered before reopening in 2002.

The Leaning Tower of Pisa, which I was able to climb last month, failed in the most fundamental requirement of most buildings – staying permanently upright – though in some-ways of course this very failure was the secret of its long term success and certainly the main reason that people like me still pay good money to climb it more than 800 years after it first started leaning.

When buildings fail to deliver the intended results, we talk about a “performance gap”. While this can embrace many areas including cost, safety and comfort, we tend to talk about this particularly where energy performance is concerned. This reflects the fact that energy performance is at least ostensibly a goal of most of those involved in the design, construction and management of buildings, and that as energy prices rise and concerns over the impact of greenhouse gas emissions become more acute, the sense of urgency can only increase.

Some of the reasons for this are highlighted in a useful new book “How Much Energy Does Your Building Use?” by Liz Reason (Dō Sustainability) whose launch I attended in London last week. The book highlights examples of buildings initially hailed as energy efficient which spectacularly failed to live up to their reputation. It also shows how these failings can emerge at any stage of the building process from initial planning and design through construction, commissioning and occupation and operation, and considers how these problems and shortcomings can best  be addressed and avoided.

What I want to focus on here is one central question: How do we know how our building is actually performing, let alone how it is likely to perform in future? The key here is information, which needs to be collected and then analysed, not just to show us any obvious performance issues but also point to potential problems or just unusual patterns that deserve further investigation and explanation.

This points to a central role for Building Energy Management Systems (BEMS). These are offered by a wide range of suppliers, including most of the major Building Automation providers, and present wide ranging functionality. Central to almost all of them is the collection and analysis of data, sometimes in prodigious volumes. A well implemented BEMS enables you to keep track of what your building is actually doing, irrespective of what it was intended or expected to achieve.

'Performance gaps' in buildings are nothing new...

‘Performance gaps’ in buildings are nothing new…

Another way in which the performance gap points towards BEMS is that while the value of BEMS has been widely recognised for some time in the retrofit market, especially for the huge mass of buildings constructed in 1960 – 1990, there has sometimes been a tendency to assume that more recent buildings, being generally built to much higher standards, can, to a degree, “look after themselves”. If a building really is “zero energy” then what is there to manage, at least from an energy point of view?

However, if there are basic failings in the design itself, the way it has been implemented or commissioned, or the way the building is operated in relation to its actual usage, then the performance gap can loom up large and un-ecological as a fire-breathing dragon. Sometimes the failings can be obvious: a stiflingly uncomfortable office can jump up and hit you as much as a wildly wobbling bridge. But in other instances, energy wastage is less obvious. Real performance issues emerge only when the actual data is collected and analysed over time.

This month BSRIA publishes the latest update of the study “BEMS Market 2014 Q2 :Developments in Europe and the USA”, a study which, with its regular quarterly updates, helps you to keep up to speed with the newest developments in this exciting and important area.

%d bloggers like this: