The selection criteria of refrigerants

Salim Deramchi, Senior Building Services Engineer at BSRIA

Salim Deramchi, Senior Building Services Engineer at BSRIA

This is part two of a three part series from Salim. You can read part 1 here

There is no general rule governing the selection of refrigerants, however there are of course the five classic criteria and those are:

  • thermophysical properties
  • technological
  • economic aspects
  • safety
  • environmental factors

However, in addition to these criteria, others have to be considered such as local regulations and standards as well as maintainability and ‘cultural’ criteria associated with skills to support the units, application, and user training requirements.

The best approach when presenting evolution and trends is certainly the per-application approach. The desirable characteristics of “ideal” refrigerants are considered to be:

  1. Normal boiling point below 0°C
  2. Non-flammable
  3. Non-toxic
  4. Easily detectable in case of leakage
  5. Stable under operating conditions
  6. Easy to recycle after use
  7. Relatively large area for heat evaporation
  8. Relatively inexpensive to produce
  9. Low environmental impacts in case of accidental venting
  10. Low gas flow rate per unit of cooling at compressor

The choice of alternative refrigerants should involve a review of recycling or disposal of refrigerants. You must decide which criteria for the ideal refrigerant is of most importance to your organisation. It must be considered that the operation phase is the key factor when determining the environmental impact of the various refrigerants as there is less impact to the environment in the production and disposal stages. As an example, supermarket retailers are steadily moving away from long-established HFC refrigeration systems.

Decision making for new refrigeration plant using refrigerant alternatives such as ammonia, CO2 or hydrocarbons, which have comparatively little or no impact on global warming and zero impact on ozone layer, should consider not only the impact on the environment but the additional required skills to maintain (Ko Matsunaga).

You can  find out more information in BSRIA’s library

The hidden menace of corrosion in heating and cooling systems

Written by Reginald Brown, Senior Consultant at BSRIA

Written by Reginald Brown, Senior Consultant at BSRIA

Most buildings services engineers will have come across a heating or cooling system that has not received water treatment and still appears to function perfectly and another that has apparently been treated but experienced serious corrosion related failures. Why should one be vulnerable and the other not? The answer is that most common metals are subject to corrosion but the rate of corrosion and risk of failure depends on a variety of factors including the chemical and microbiological environment, temperature, flow rate and not least the thickness of the metal.

In many respects water is the ideal heat transfer medium for building services. It has a reasonably high specific heat, is liquid over a convenient temperature range and is non-flammable, non-toxic and freely available. The downside is that water is an electrolyte that facilitates corrosion in metallic pipework and components. One might think that the obvious solution is to use plastic pipework but this can actually increase the risk of corrosion of the corrodible components that remain.In a steel pipework system, the dissolved oxygen in the system water will rapidly be used up as it reacts with the large area of corrodible surface but the loss of metal thickness should be insignificant. In a plastic pipework system there are few corrodible components so oxygen concentration will remain higher for longer and the corrodible materials will continue to corrode at a high rate. This means that almost all water based heating and cooling systems should have some form of water treatment to control corrosion, and it may be even more important in plastic pipework systems.

The usual construction programme for large building projects involves installation and pressure testing of pipework followed by pre-commission cleaning and commissioning several months later. During the gap between pressure testing and pre-commission cleaning the system may be both stagnant and still contaminated with manufacturing and construction residues. This is an ideal environment for the development of biofilm and corrosion.

In traditional steel pipe systems (using BS 1387:1985 or BS EN 10255:2004 medium or heavy grade pipe) this is not too much of a problem. The relatively thick pipe (at least 3.2 mm for 1 inch nominal bore and larger) can tolerate the initial corrosion due to the oxygen in the fill water and biofilm development during subsequent stagnation conditions. Provided the pre-commissioning cleaning is carried out effectively, ideally with a biocide wash prior to chemical cleaning, there should be minimal impact on the lifetime of the system.

Thin wall steel pipes and steel panel radiators may not be so fortunate. The thickness of 25 mm nominal bore thin wall carbon steel pipe is only 1.5 mm while a typical steel panel radiator is only 1.3 mm thick. If the initial corrosion was spread uniformly across the metal surface it would not be problem but what tends to happen is that small patches of the surface become anodic relative to their surroundings and are preferentially corroded leading to rapid localised pitting. If dissolved oxygen levels persist or are replenished due air ingress, continuing additions of fresh water or permeation through non-metallic materials then the pitting can progress to perforation. Components that should last 25 years can be perforated in a few months. This is one of the most frequent types of corrosion failure reported to BSRIA and can result in expensive remedial works even before the building is occupied.

Water treatment chemicals work by inhibiting the corrosion process, either by coating the surface of the metal (anodic inhibitors) or otherwise blocking the corrosion reactions (cathodic inhibitors). However, inhibitors are not the solution to poor closed system design or operational deficiencies and certainly won’t work to best effect in a dirty system i.e. one with a high level of suspended solids and/or biological contamination. Also, the system operation must allow the inhibitors and other water treatment chemical to be maintained at an effective concentration and circulated throughout the year.

In summary, the factors necessary to avoid pitting corrosion of steel components in closed systems are:

  1. Minimise the delay between first fill and pre-commission cleaning.
  2. Carry out effective pre-commission cleaning of the pipework system.
  3. Establish, monitor and maintain effective water treatment and water quality as soon as possible in the life of the system.
  4. Circulate water throughout the system on a daily basis to avoid stagnation.
  5. Avoid ingress of oxygen from inadequate pressurisation or excessive fresh water additions.
What happens in the first few weeks of the system can prevent pipe corrosion like this over the next 25 years

What happens in the first few weeks of the system can prevent pipe corrosion like this over the next 25 years

What happens in the first few weeks of the life of the system will influence its fate over the next 25 years. You can’t easily see what is going on inside a pipe but get it wrong and you could be looking at major remedial works in a tenth of that time.

A detailed discussion of corrosion and the use of inhibitors and other chemicals is contained in BSRIA BG50 Water Treatment for Closed Heating and Cooling Systems. Pre-commissioning cleaning is described in BSRIA BG29 Pre-commission cleaning of pipework systems. Guidance on the monitoring of water quality in closed systems is contained in these documents and BS 8552 Sampling and monitoring of water from building services closed systems – Code of practice.

BSRIA also runs a Pre-commission cleaning of pipework systems training course and provides independent failure investigations for all types of building plant and systems including pipweork corrosion.

This article was first published in Modern Building Services.

Proving the future – how to keep up with Building Regulations

"From a standing start in 2006 to today, the builders have grasped the importance of air tightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency" Mike Smith, Engineering Director

“From a standing start in 2006 to today, the builders have grasped the importance of air tightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency” Mike Smith, Engineering Director

The rapid adoption of airtightness testing and the ability of the industry to achieve the right result first time in 89% of tests is one of the success stories of the UK construction industry over the past decade. The BSRIA Compliance team tested over 10,000 dwellings and 720 non-dwellings in 2012 and found the average dwelling airtightness value was 4.89 m3/(hr.m2) envelope area at 50 Pa (against a maximum regulatory value of 10 m3/(hr.m2)).

From a standing start in 2006 to today, the builders have grasped the importance of airtightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency. The testing itself is rigorous, robust and, arguably, now at a very low economic price. It has respectability provided by UKAS accreditation for non-dwellings testing, the training of testers and, in the case of dwelling testing, registered testers through the Airtightness Testing and Measurement Association (part of the British Institute for Non-Destructive Testing).

The mantra should be “Build tight, ventilate right”. As fabric standards improve, driven on further by the 2013 Building Regulations, the role of passive and mechanical ventilation systems increases in importance. Unfortunately in the world of unintended consequences, we are seeing dwellings achieving better airtightness values than the designer intended which of course means less air leakage (and associated energy waste), but this is only useful if the designed-in ventilation systems can cope with these outcomes. In a nutshell the infrastructure supporting domestic ventilation engineering has not developed at the same pace as the improvement in building airtightness.

There is of course significant current activity to help remedy this problem but, as is so often the case, we are now on the back foot with increasing numbers of examples of poor installations and the inevitable questioning of the value of mechanical ventilation solutions.

The systems we are talking about are not complex but they are sensitive to errors. What is missing is not so much the technology or science but the widespread creation and adoption of proper codes of practice. Mechanical ventilation (MV) systems and the more complex MV heat recovery (MVHR) systems have to be site tested to ensure they are extracting and supplying appropriate amounts of ventilation. In the course of its compliance testing BSRIA is seeing two main kinds of problems.

The first is the performance of the specified equipment in a given situation, i.e. that the fan is correctly selected to match both the actual application and the inherent system losses that the system components will introduce. In simple terms this comes down to understanding the resistance characteristics of ductwork and its routing and the resistance of terminal units both inside and out. There is a widespread misunderstanding that ventilation fan outputs are usually quoted with outputs measured in “free air”. In reality they have to overcome backpressures from fittings. Even where kits are bought we see alternative terminal units used, usually to meet architects demands for aesthetics.

The second is the actual installation of the associated ductwork where there is a very poor understanding of the dramatic effect on performance that can arise from bad workmanship.

In a recent case BSRIA found approximately one metre of flexible ductwork that had been stuffed into the cavity wall for a straight through the wall installation that is approximately 300 mm thick. An additional 100 mm dogleg had been introduced on site to match the actual positioning of a porch structure. The result was a lot of fan noise with almost zero movement. The fan, when bench tested with zero back pressure, had a performance of 22 l/s, the designed performance including the ducting was 20 l/s however the actual performance was 5 l/s.

As part of the “catch up” in dealing with the rapid rise in the use of domestic ventilation we have identified that the act of measuring MVHR performance using published guidelines will give false results if the correct equipment or correction factors are not used. There is an easy remedy but not widely used at present. The automatic volume flow meter with pressure compensation – more commonly known as a “powered diff” will provide an instantaneous and accurate value. A more common hooded anemometer will impose a back pressure on the terminal, ducting and fan under test and the readings must be corrected (post use) specifically for both the anemometer model and the actual fan under test. More detail on this can be found in BSRIA’s “Domestic Ventilation Systems – a guide to measuring airflow rates – BG46/2013”.

And all of this is compounded by a lack of thinking regarding operational needs, limited controls, and poor instructions to the user, especially on what maintenance is required to keep performance at its peak.

So, airtightness demands have led to unforeseen consequences and something of a reaction against the use of mechanical ventilation. What then can be done to avoid making the same mistakes on other systems and concepts?

With fabric issues now largely dealt with in the Building Regulations it is likely that new focus will fall on the efficiency and operation of the MEP services in dwellings. If modelling and measuring the thermodynamics of a brick wall is difficult imagine how complex a multivalent heating system is going to be! And before being put into use, these complex integrated systems will need commissioning and possibly proving as well.

The Zero Carbon Hub has recognised that we will need to devise new test methods and regimes that, for example, will evaluate how the solar thermal collector performance meets expectations when linked with the ground source heat pump system that serves hot water generation, underfloor heating and thermal storage, in concert with a biomass boiler or room heater. Before regulation stimulates the market we need to have good practice guidance and proven on-site commissioning and test processes in place. This work is urgent and needs significant central support. With the next revision of Part L expected for 2016 – this time aimed at achieving zero (or nearly) carbon homes, time is not available to embark on a protracted negotiation with innumerable and varied industrial interests. Certainly industry’s support will be available but only for a properly directed and centrally funded programme.

If we fail to put into place a mechanism to improve the on-site verification of performance of new systems we will only have ourselves to blame for the next set of well publicised “failures to launch” and the consequent set back of achieving national aims.

BSRIA provides a range of Compliance Testing services for stress-free compliance to Building Regulations including airtightness (Part L), sound insulation (Part E) and ventilation testing (Part F).

Recipe for Success

 

Ian Harman of Marflow Hydronics

Ian Harman, Technical Applications Enginner, Marflow Hydronics

Months are spent putting them together, and thousands of pounds are spent printing and promoting them, but it still seems that the wealth of documentation out in the industry, that could help users design, install and commission systems, is not always used.

No one could just pick up a pen one day and design a flawless system, whatever core skills they have.  It takes training and understanding; it takes skills that have to be developed over many years.  To support this, collected groups of people with the right knowledge and experience produce documentation that explains best practice and provide methods for success.  But in our busy industry, there isn’t always time to sit and follow best practice guidelines, sometimes you just have to use the best knowledge you have.

What if you were baking a cake, though, would you just use your best knowledge then?  You may have made a cake before, but are you really going to remember every single step, every single ingredient, every single amount to be used?  And if you did just use your memory, would you really expect the cake to turn out perfectly?  It’s highly unlikely.

So why not follow the ‘recipe’ when designing, installing and commissioning systems?

Designing Long Term

design-support-l1In my team, we’re always telling our customers to start with the end in mind.  The first step is always the design stage.  It’s vital that this is done with the complete picture in mind, keeping all the factors of how it’s going to work long term, in real life conditions, in mind.  For example, what are the best products to use?  How will seasonal commissioning take place?  How can you optimise efficiency?  It’s far easier for all contingencies to be considered up front, because if you realise you’re missing something further down the road it’s much harder to add it in later.  If we go back to the cake analogy, you wouldn’t start to bake a cake without considering what sort of cake it’s going to be.  If you later decided you wanted a chocolate sponge, it would be too late to add the cocoa after you’ve started to cook it.  Full consideration of every point needs to be done up front.

Ultimately, designers want to make sure that they design the most efficient systems possible using the simplest method.  No matter what the system, problems will always be inevitable, so designers also need to think about how systems can be troubleshooted when things do go awry that will cause limited disruption and can offer the quickest solution.

All this leads to one conclusion:  a system needs to be designed so it can work as well as it possibly can, with a few contingencies in mind.

CIBSE Commissioning Code W

CIBSE Commissioning Code W

Doing it Right

The documentation that’s been put together by collected groups of experts should provide anyone with all the information they need.  A Commissioning Code, for example, such as Code W, will provide guidance on what needs to be specified and included to make a system work; and then a BSRIA document will give all the important detail to achieve individual areas such as Pre-Commissioning.

The benefit of such guides is that they are not the opinion of just one author, they are made up of the knowledge of a group of experienced individuals who have to agree on what the best practice is, providing the greatest possible level of information.

My team at Marflow Hydronics actively encourages the use of such documentation, as getting the design, installation and commissioning of systems right, and right first time, is so important to the long term welfare of any system.

This was a guest post by Ian Harman, Technical Applications Engineer at Marflow Hydronics, BSRIA Member

Room temperature measurement

Measuring temperature in a room is one of the things we do most often as building services engineers.  It seems straightforward, but is it really as simple as it appears?

Specifications often state that a certain temperature must be maintained in a building, but what does this mean? Designers need to know what they are designing for. Contractors need to know where to put the sensors. Commissioning engineers need to know how to confirm the building meets the specification and last, but not least the occupants need to be satisfied and comfortable.

I would like to know what you think and what you do for temperature measurement….

  • Do you measure air temperature, radiant temperature, environmental temperature or something else?
  • What height do you measure it?
  • Where in the room? At desks or in the centre?
  • At the worst spot, the best spot or the average?
  • How long do you measure for?
  • Should you take the average over time, the lowest or the highest?
  • How long should you leave the system to warm up or cool down?
  • What do you use to measure temperature; liquid in glass bulb, thermistor, thermocouple or infrared?
  • How is your thermometer or temperature sensor calibrated and how often?
  • Should we really be specifying temperature at all?  It is often occupant comfort that matters most.

This might lead to a Best Practice Guide or a series of guides because we could also look at other measurements for building services such as water temperature, humidity and air flow. You can feedback using the form below or by commenting on this post.

%d bloggers like this: