Construction quality could be catching up with other industries

This blog was written by Lynne Ceeney, Technical Director at BSRIA

If you order steak and chips at a restaurant, but the waiter delivers hake in strips, you would be rightly annoyed. Instinctively you blame the waiter, but it could have been a problem with the ordering software, a misreading in the kitchen or just the wrong dish being picked up.  Whatever, you would send it back – it is not what you ordered.   In new buildings, this happens all the time.  Poor communication during the briefing, design and construction process, and poor handover and operation leads to a building that doesn’t deliver the performance the client thought they had ordered in the first place.  Unlike a dinner, it’s not practical to send a building back and wait for the one you asked for to be delivered.  Instead extensive snagging lists, expensive defect resolution and defensive “best we can do” fixes by the facilities team are often used to try and get the building closer to its intended performance – and “closer” is usually the best that can be achieved. The owner and occupier end up with a disappointing building, and the designers and construction company are left with a disappointed client.  The blame chain spreads, and it’s hard to pin down the fault.

The impacts run way beyond disappointment.  Occupier discomfort impacts staff retention, and the increased societal focus on wellbeing indicates that employees will expect higher standards from their place of work.  Poor commissioning or confusing controls mean building systems that don’t work properly and need constant attention or premature replacement, as the uncomfortable working conditions impact on worker productivity.  Inefficient buildings use more energy requiring more cash and causing more carbon emissions.  In fact buildings contribute 37% of UK green house gas emissions from gas heating, and consume 67% of the electricity used in the country.  It’s no wonder that larger investors are taking much more of an interest in the sustainability and performance of buildings rather than just the upfront capital cost.  Good buildings are an asset, poor buildings become an expensive liability in terms of operating costs and void periods. Competitive property markets compound this situation.

With a typical building having a life expectancy of at least 60 years, we are building in problems for this generation and the next.  We’re not great at mass retrofitting, (and the high demand for additional building stock means a capital, skills and material shortage) so we need to get it right first time.  Effective management tools with this aim abound in other sectors, for example DRIFT, (Doing it Right First Time), Six Sigma, LEAN and Zero Defects.  We see the approach being used in food manufacture, car making, pilot training, and patient healthcare, to name but a few sectors.  So what about construction?

Soft Landings is the equivalent tool for the construction sector.  This tried and tested process was developed to help to produce better performing buildings – not necessarily exceptional in performance, but buildings that deliver in operation what they were designed to do in the first place.  Getting a building right requires a shared focus on operational performance of the building right from the start, and throughout the design, construction and commissioning process.  The use of Soft Landings delivers this shared focus, improving communication and collaboration between all parties in the building delivery chain.  It helps everyone to avoid the pitfalls that diminish operational building performance. It fits with RIBA stages, integrates into existing construction processes, and does not require a specific building procurement model.  You can download Soft Landings guidance from the BSRIA website .

However it is always helpful to find out about real world experiences, and to talk to others who are using Soft Landings to help them to produce better buildings.  With this in mind, BSRIA have organised the 2017 Soft Landings Conference (June 16th 2017 at RIBA, Portland Place, London W1B 1AD). You will hear from a range of speakers from different parts of the construction process – including clients – who will explain how they have used Soft Landings in their projects, and the value that it has delivered for their buildings.  You will also hear their hints and tips, and there will be plenty of time to ask questions and take part in discussion both in conference and over lunch.

It’s time for the construction industry to catch up with other industries in terms of quality, to produce buildings that perform as expected, through a delivery process that gets it right first time.  Soft Landings is a process that helps the delivery chain to do this.  For more information on the conference please contact our Events Manager, Tracey Tilbry.

 

University of Reading Research Study: Indoor Environmental Quality and occupant well-being

Gary Middlehurst is a post-graduate student at the University of Reading's School of Construction Management and the Technologies for Sustainable Built Environments

Gary Middlehurst is an Engineering Doctorate (EngD) student at the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE)

Looking at a new approach for determining indoor environmental quality (IEQ) factors and their effects upon building occupants, BSRIA has provided the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE) Centre access to their Bracknell office building known as the “blue building”.

 IEQ factors are proven to affect occupant well-being and business performance, however, for the first time, actual environmental and physiological field measurements will be compared. New research therefore has been developed by the University of Reading, which will seek to understand these relationships and the potential impacts of known IEQ factors on perceived levels of occupant satisfaction and well-being.

Understanding fundamentally how IEQ factors can affect building users, will allow system designers to finally visualise occupant well-being, personal satisfaction and productivity as part of a holistic business performance model. Based upon empirical measured IEQ factors and surveyed occupant data, the research hypothesis proposes that high-density occupation can reduce office workplace environmental footprints significantly when physiological impacts are understood.

The research methodology brings together measured environmental characteristics, physiological performance measurements, POE survey responses, and then uses an Analytic Hierarchy Process (AHP) to assess existing workplace designs.

Gary Middlehurst blogReducing operational costs and increasing occupant satisfaction and well-being is seen as a distinct competitive advantage, however, businesses remain focused towards meeting the challenges of energy security, demand side management and carbon commitments. The research, therefore, will provide empirical data to create informed business decisions focused upon these challenges. This is done by increasing the importance of well-being and by defining performance as a key metric.

Field research is currently underway on the top floor within the “blue building”, where 4 willing volunteers are participating in physiological sensory measurements and POE response surveys. The project will be running for 12-months, with the initial current 2-week data acquisition period being repeated a further 3 times during winter, spring and summer of 2015/16.

The research is also being conducted at two other similar office environments in Manchester and London, and seeks to support the hypothesis that hi-density workplaces are a further sustainable step in designing and operating more efficient and effective intelligent buildings.

Post Occupancy Evaluation: operational performance of a refurbished office building

This blog was written by Dr Michelle Agha-Hossein BEng (Hons), EngD, Sustainable Building Consultant for BSRIA's Sustainable Construction Group

This blog was written by Dr Michelle Agha-Hossein BEng (Hons), EngD,
Sustainable Building Consultant for BSRIA’s Sustainable Construction Group

My Engineering Doctorate study aimed to investigate how and to what extent office building refurbishment can help to improve occupants’ satisfaction, perceived productivity and well-being while optimising building’s operational performance.

A case study approach and a “diagnostic” post-occupancy evaluation style of framework were adopted in this study to evaluate the performance of a recently refurbished 5-storey office building in detail and find opportunities to reduce the gap, if any. The study divided the workplace’s environment into three categories: ‘physical conditions’, ‘interior use of space’ and ‘indoor facilities’. Employee surveys and interviews revealed that interior use of space was the most important aspect of the building influencing occupants’ perceived productivity, well-being and enjoyment at work (happiness) while the improvement of the indoor facilities had no significant effect.

The study also concluded that issues with the physical conditions (such as noise and temperature) causes negative effects on perceived productivity but improving this aspect to a higher level than it is required would not necessarily increase perceived productivity. In contrast, improving the interior use of space aspect of a workplace would increase employees’ perceived productivity proportionally.  These results, however, should be considered with cautious as employee’s satisfaction surveys and interviews revealed that employees’ levels of expectation might have affected their levels of satisfaction with their new work environment.  This could cause some bias in the results of buildings’ performance evaluation. A potential

Old working environment

Old working environment

solution to this issue is to measure occupants’ expectations for their future workplace at the design stage to try to fulfil these expectations as much as possible. How well the new work environment met occupants’ expectations is another factor that should be measured at the post-occupancy stage.

It was also noted that the occupants density at the building was low at the time of the study (17.7m2/person) and that the space was not fully and effectively utilised and more than 50% of the workstations were often not in use. The link between improving space utilisation and the building’s energy consumption as well as its occupants’ perceived

New working environment

New working environment

productivity and well-being merits further investigation. These results are important in the projects where increasing productivity is a key and the budget is limited.

In terms of energy performance and CO2 emission, it was revealed that the actual emission of the building was three times more than the design target. Most of the low cost opportunities identified to reduce the gap were related to the building management and control as well as occupants’ behaviour. I will be doing a webinar very soon on simple energy efficiency tips related to building management and control and occupants’ behaviour. Watch BSRIA’s website for more details about this webinar. 

How to procure Soft Landings

BG 45/2013 Soft Landings procurement Guide

BG 45/2013 Soft Landings procurement Guide

BSRIA has just launched its latest guidance on the Soft Landings graduated handover process.   How to Procure Soft Landings – guidance for clients, consultants and contractors is designed to help clients and their professional and building teams frame their Soft Landings requirements in a consistent and structured manner.

 The guide is a response to two clear trends in the use of Soft Landings. Primarily, clients aren’t sure what they are asking for when they call for it in tenders. Construction firms are seeing wide differences in client requirements. The initiated clients may spell it out, but for every expert client there are 20 who simply ask for Soft Landings without a clear idea of what it is.

 Many builders and contractors, particularly those not up with current thinking, are similarly clueless on how best to respond. That’s one of the downsides with an open-source protocol – the viral spread of Soft Landings is a good thing, but a lack of certification and control means that the uninitiated can easily catch a cold.

 Second, Soft Landings is being adopted by central government as a formal procurement policy. This is Government Soft Landings (otherwise known as GSL), a Cabinet Office-inspired interpretation of Soft Landings for government clients. While it’s not a million miles away from the official version published by BSRIA and the Usable Buildings Trust, GSL takes a more facilities management perspective of the process and focusses far more on getting guaranteed outcomes from the construction industry. GSL is slated to be mandated for central government projects in 2016, along with the adoption of Building Information Modelling (BIM), with which Soft Landings is well-suited.

 So what we have, then, are commercial clients still a little confused in their (voluntary) adoption of Soft Landings. On top of that is an incoming group of government clients, building anything from schools to prisons to aircraft hangers,  for whom Soft Landings is a huge unknown but who will be mandated to adopt it. BSRIA’s view is that it might be a good idea to lay out the best ways of expressing Soft Landings in client requirements, pre-qualification questionnaires, and invitations to tender, so that the clients and industry alike get greater consistency in Soft Landings projects from the very outset.  

 The procurement guide has benefited substantially from the Soft Landings User Group, a BSRIA-run team of clients, architects, consultants and contractors who have learnt from experience on Soft Landings projects what works well and what doesn’t. This learning has been used to create practical, generic requirements for Soft Landings activities that can be used in project documentation. 

 A body like the User Group is absolutely vital for the practical development of Soft Landings. BSRIA knows it doesn’t have all the answers, and in any case should not dictate how Soft Landings is put into operation on real projects. Each project has its own needs and objectives, and each form of procurement throws up its own set of opportunities and challenges. The trick is to find out what works in each context, and try and find ways round thorny issues like novation and cost-cutting for instance, both of which can compromise the best of intentions.

 The guide provides specifically-worded requirements for each step in each of the five stages of Soft Landings.  The guidance is split into three sections, with requirements worded for clients appointing professional designers, clients appointing main contractors/builders, and contractors appointing sub-contractors.  Inevitably, there is some repetition, but the guide gets round that at relevant points by referring the reader to sections in the guide where a specific requirement is more logically located. 

Stage 3 - Pre-handover

Stage 3 – Pre-handover

The example shown is typical. Energy metering installations are proving to be a major problem – they are installed to satisfy Building Regulations, but are often not set up in a way that makes them useful. Although the Soft Landings Framework calls for an energy metering strategy, the procurement guide goes a step further by spelling out what should be provided, in this case at the pre-handover stage. Each requirement is supported by explanatory text that gives the main contractor, in this instance, some background context and the reasons for the requirement.

 Some Soft Landings stages may have more than one worded requirement. Some optional requirements have also been provided, for instance in the aftercare stages where it may be important to spell out precisely who should be involved and for how long.

 For example, under the core requirements for main contractors appointing sub-contractors, contractors have the option of requiring a subcontractor to be retained to assist the client and other members of the project team during handover, and afterwards to monitor the building’s performance. Some sub-contractors may be required to be based on site full-time during the initial aftercare period to assist with end-user queries and to undertake fine-tuning of systems. This would not typically apply to a ductwork sub-contractor, but it would usually apply to a controls sub-contractor. More critically, it could apply to any contractor whose systems or components come with automatic controls, particularly those with bespoke communication protocols (seemly most of them) which can only be adjusted by the supplier after payment of a fat call-out fee. If you’re nodding at this point, you know how it is. The Soft Landings procurement guide now covers this issue, and many others like it.

 An opportunity has been taken to fill gaps in the Soft Landings Framework, published back in 2009 when practical experience was a bit thin on the ground. For example, the guide contains a generic design work stage which was not included in the Framework. The procurement guide also provides more detailed advice on principles of procurement and tendering, how to include Soft Landings in tender processes and interviews, and some advice on the best way to budget for Soft Landings.

 The timing of the guidance also coincided fortuitously with the publication of the 2013 RIBA Plan of Work, which gave BSRIA the opportunity to align Soft Landings stages against the new RIBA stages, and those published by the CIC. There’s also a public sector Soft Landings decision tree included to help government and local authority clients dovetail their procurement requirements with Soft Landings requirements.

 Building performance research is identifying many critical aspects of procurement where clients and the construction industry need to tighten up their respective acts. The commissioning manager is a critical role, and the earlier they can be appointed the better. The procurement guide offers some advice on how to do this, and what their role should be in Soft Landings.

 Soft Landings is not job in itself but a set of roles and responsibilities shared among the client and project team. However, on large jobs particularly a co-ordinator may be needed to make sure the administration is carried out. Paperwork – which could include updating operational risk registers in BIM models for example – needs to be done by someone. If this isn’t covered, Soft Landings might fail ‘for want of a nail’.

 BSRIA hopes that How to Procure Soft Landings – guidance for clients, consultants and contractors will provide all that clients and project teams need to put Soft Landings into operation.  It is a practical guide to accompany the Soft Landings Framework – still the industry bible on what Soft Landings is about, and why you should adopt it.

 With all this talk about the performance gap between design and building operation, we mustn’t lose sight of the fact that the act of procuring a building and constructing it is a team enterprise. No-one goes into the process with the intention of doing a bad job.  Events, like many things in life, can conspire against it. What Soft Landings tries to do is provide toeholds for everyone involved to do a better job in the face of budgetary, time and skills pressures.  How to Procure Soft Landings – guidance for clients, consultants and contractors provides a whole load more toeholds for everyone.

 BSRIA BG45/2013 How to Procure Soft Landings – guidance for clients, consultants and contractors is available from BSRIA bookshop.

Post Occupancy Evaluation – The challenges of a ‘greener’ future

I joined BSRIA as a Graduate Engineer in January 2011. Prior to this I was studying for my PhD in the School of Civil Engineering at the University of Leeds.

An Appraisal of the performance of a ‘green’ office building

A summary of my research is given below:

The challenges of a ‘greener’ future are now a responsibility for everyone. This is particularly so for the built environment, where sustainable building design is no longer an innovative option but more of a legislative must. Unfortunately significant differences are often found between the design and measured performance of buildings, with many factors contributing towards these discrepancies.

The research work investigated, using Post Occupancy Evaluation (POE) techniques, the credibility gap between design and measured performance of a partially occupied ‘green’ office building selected as the case study. The results found that the measured energy consumption was over three times the design estimates, and the performance compared poorly against good practice benchmarks for similar buildings. The study’s POE also revealed inefficient control settings, high out-of-hours energy consumption and ineffective building management.

This study went beyond a typical POE as it also includes investigations into how the occupancy variations, and the management strategies applied under these conditions, can impact on building energy performance through the use of simulation modelling techniques (IES<VE>). This is an area where very little research had previously been carried out. At the 50% occupancy levels found at the time the research was conducted, potential annual savings of over £30,000 in utility bills and 60% in energy consumption were estimated if more effective management and control was implemented.

Social-related aspects of building performance are also investigated. Occupant satisfaction and comfort surveys were conducted and the results were compared to previous findings. The perceived comfort and satisfaction with temperature was the most disappointing finding from the survey, however overall the building was comparable to the average benchmarks, but did not perform well when compared to other ‘green’ office buildings.

The study revealed the potential for the building to be fine-tuned to perform more efficiently than was at the time of the study, however there must be suitable, skilled Facility Management to ensure this is delivered.

For more information on Post Occupancy Evaluation/ Building Performance Evaluation…..

%d bloggers like this: