Making buildings better – measuring for improved building performance

Andrew Eastwell, BSRIA CEO

Andrew Eastwell, BSRIA CEO

BSRIA has always been in the business of measuring, whether it is a physical quantity such as temperature or pressure, a market assessment such as volume of product imported to a given country or a softer, more management-orientated value such as a benchmark or satisfaction score. Measuring is a fundamental characteristic of our industry’s operations and it is in BSRIA’s DNA.

The need for accurate and more comprehensive measurement has been increasing in response to the revolution that is the low carbon agenda. Revolution is no idle description either. In just over a decade, carbon signatures of new buildings have been required to fall to “nearly zero” – yet few owners were even aware of their building’s operational carbon use at the start. In looking backwards over the past few years, I think BSRIA can be proud of its role in promoting the increased use of through-life measurement embedded in processes such as Soft Landings and the associated building performance evaluations.

There is another BSRIA process that is associated with the collection of measurements. This is the process that turns detailed, often randomly accumulated and frequently disconnected data and information into documents that can be used by our members to guide them in their work. A couple of decades ago this process was greatly enhanced by the availability of a managed construction research programme that not only contributed funds from central government but much more importantly brought focus and long term stability to the accumulation of knowledge. This stability was crucial since it enabled individuals to establish research skills and careers with enduring value to the sector they served. Loss of this programme has also resulted in a loss of cohesion between frontline companies willing to collaborate within the longer term research process.

There is a however a new kid on the block that may be about to revolutionise the traditional measure/analyse/publish process that has dominated research and guidance in our sector.

As disruptive technologies go, Big Data has managed to remain under the public radar quite well until the recent disclosures of the USA “Prism” project. Under Prism, colossal quantities of data harvested from both open and private sources are analysed to identify supposed threats to homeland security. It is the use of automatic analytics software combined with large arrays of sophisticated new sensing technologies that makes Big Data techniques so intriguing for the built environment sector.

By way of example, consider the problem of maintaining comfortable temperatures in a space. Traditionally we have used lab research on volunteers to establish what “comfort” requires. Ole Fanger took years to generate his widely used algorithms but they still do not cover all the possible variables that affect perceived comfort. We now use a thermostat, with a setpoint guided by Fanger, and assume that all is well with our occupants. In the new paradigm, cameras utilising facial recognition software will be capable of spotting yawning (too hot, too much CO?) or sluggish activity (too cold). This data is available for every worker in a given space and a “voting” system used to optimise comfort over the group.

But of course there is more. This data could be available from many sources in a Prism type environment. There would now be the potential to mine the data to establish new benchmarks feeding back to the design process that can be tailored to the particular activity type. Schools, offices, homes and shops each can be analysed not just to establish a single setpoint value but to understand in great detail the envelope or distribution of responses. At last, proper large scale data sets can aid our work – and most of what we need to do this is already available through installed BEMS.

There is one further gain possible from this approach. Traditional academic research leading to refereed papers and thence to institutional guidance can take half a working lifetime to complete. Big Data results can be achieved in hugely reduced timespans. Take the case of adverts you see on Google – these are tailored specifically to you based on purchase decisions you may have only made via unconnected sites a few hours earlier. Scary but true.

Big Data is where BIM, Smart Cities, performance contracting and responsive design meet. It challenges all the preconceptions of professional codes, cuts swathes through the notion of privacy and opens up “our” market for knowledge to an entirely new set of competitive players. The next decade is going to be seriously exciting and I am sure BSRIA will remain strong to its ethos of Measuring and Managing in this startling new environment.

BSRIA provides a range of services to conduct and support BPE, from the complete evaluation to providing energy monitoring instruments and benchmarking building performance.

The Smart Response to Managing Buildings’ Energy Problems

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Issues around energy continue to dominate many of the news headlines in the UK, and are seldom far from the forefront in other developed countries. While much of the focus has been on rising domestic energy price- tariffs, the way that buildings use, and all too often waste, energy remains a huge concern. This is hardly surprising given that in both Europe and North America, buildings account for a whopping 40% of all energy consumed.

One thorny problem is the high cost of improving building energy performance, especially in a country like the UK where the building stock, especially  the residential building stock, tends to date back to an era when the principles of energy conservation were much less well understood, let alone acted on, and where the cost of improvements and renovation can be high, and the ROI correspondingly long – a daunting prospect when governments, companies and consumers are all still hurting from the financial hangover following the worst recession in decades.

All of this means that institutions, companies and households need to look at smarter ways of coping with high-cost energy in buildings that are often not ‘designed’ to be energy- efficient.  Here at BSRIA we have just completed a regular update of our report into Building Energy Management in Europe and North America, which has given us the chance to review some of the key current developments. As part of this, we looked at 17 of the leading suppliers to this market.

One immediately striking conclusion is that all of the leaders incorporate a level of analytics, in some cases as part of a wider portfolio, in others as their central specialised offering.  In one sense this is not surprising. If you want to improve a building’s performance then you can either take a direct physical approach– for example more energy-efficient construction or insulation, or cheaper or more environmentally friendly energy sources – or you can take steps to change the way the building uses that energy, which means interacting with its occupants and their requirements in an intelligent way, which in turn requires that you have all relevant information to hand. We can expect these analytics to become increasingly sophisticated, with buildings “learning” based on usage and performance over time.

This also helps to explain another striking finding:  that most of the suppliers in this sector now offer some level of on-going commissioning. Improving building energy performance is a continuous undertaking – reflecting the fact that buildings’ usage patterns and the behaviour of their occupants will themselves change over time, as processes and equipment become more, or less, efficient. In providing or supporting an on-going service, companies become less like suppliers in the “traditional” sense, and more like partners, providing consultancy as well as software or hardware. In some cases the service supports the actual procurement of energy and management of energy suppliers.

Another capability which is fast becoming a “must have” is the ability to offer a Software as a Service (SaaS) model, with all of the advantages in terms of cost model, maintenance, accessibility and flexibility.

wmi-thermostatAs buildings become increasingly integrated into the wider “smart world”, Demand Response, already well-established in parts of the USA is being taken up more seriously in Europe as well, with an increasing number of BEMS suppliers supporting  the move to automated demand response.

While the problems faced by large commercial buildings clearly differ in important ways from the light commercial sector and from residential buildings, there are likely here as elsewhere, to be important elements of crossover. Some suppliers are also providing differently scaled BEMS solutions and energy management is already one of the central elements of most “smart home” solutions.

Barring a sudden surge in cheap, readily available and environmentally friendly energy, which still sounds like a dream scenario, we can expect BEMS to continue its rapid advance in importance, increasingly integrated into related areas of Building Automation, and of Smart Grids.

To find out more about BSRIA’s updated study “BEMS Market 2013 Q4 : Developments in Europe and the USA”, please contact Steve Turner on +44 (0)1344 465610 (Steve.Turner@bsria.co.uk)

Review of the BSRIA Briefing 2013 – Changing Markets, New Opportunities

“Construction is the last of the big industries to go digital”, John Tebbit, Construction Products Association

November 2013 saw another brilliant BSRIA Briefing held as always at the fantastic Brewery in London. The event was chaired by John Tebbit, Industry Affairs Director at the Construction Products Association with c400 industry professionals in attendance. The speakers this year were focusing on customer satisfaction, data centre trends, changes in building practice and design decisions, smart technology leading the industry forward and the internet of things.

Chairman John highlighted two key issues facing the industry, the Construction 2025 strategy and the move towards Low Carbon as well as the construction industry being the last industry to go digital despite a demand to do so.

Bukky Bird talked about Tesco as a continuously changing organisation by highlighting some of the company’s historical milestones. From Tesco’s founder Jack Cohen opening a market stall in 1919 to becoming a global company with just over half a million colleagues today.

Bukky also highlighted some current customer expectations and key drivers for this such as the current economic context. She emphasised the need for organisations to understand and respond to changing needs and environments.

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, Tesco

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, TescoToday’s customer is under pressure, struggling with rising costs and dealing with lifestyle changes. The focus is therefore on family and the home, with a real expectation that brands should reduce waste and save money. Responding quickly to these needs is critical for retailers like Tesco and this should therefore drive the focus through the industry supply chain.

A challenge facing our industry is how to develop true partnerships to tackle these problems. Bukky highlighted the need for flexibility, agility and the need for the industry to be willing to change. The customer is changing radically and the building industry needs to be ahead of this curve.

Historically we have been very slow to adapt, and this is an opportunity to buck that trend. Her final point was that the industry are not supplying Tesco, but Tesco’s customers – understanding the customer’s needs and developing innovative solutions to meet these is key to successful partnerships.

“Nobody ever did anything to be green, they did it to save money”, Nicola Hayes, DatacenterDynamics

 Nicola Hayes looked at a rather different sector focusing on data centre trends and energy. Datacentres Nicola argued are the buildings you do not see, the hidden side of the industry and yet becoming a central part of several industries as people relocate their data to the Cloud. Nicola discussed the fact that Datacentres may be hidden but they do suffer negative publicity mostly due to the energy usage of such buildings and the accusation from the Press that they are singlehandedly destroying the planet. When viewing the industry as a country, the industry uses a little less energy than the UK as a whole, marked at 332.9TWh which is an exceptional amount and understandably a worry for the industry and a target from the Press.

But it was the trends that Nicola was concentrating on, where the Datacentre industry has come from and the expectations of it for the future. In three years the industry has grown from $86bn to a staggering $120bn as well a doubling in space used for the buildings, growing from 15million sqm to 31million sqm. The growth of Datacentres is down to several other key industries, the rate of increase has risen for Professional Services, Energy & Utilities, Industrial & Process and Media & Telecoms. With this growth there has been a change in how Datacentres are being built and their operations. There has been a 15% increase in outsourcing for the industry since 2007 rising to nearly a quarter of the industry but IT Optimisation still remains a major investment.

For the built environment the biggest change Datacentres has had for them is the increase in energy monitoring and the storage of millions of data bits. People in the world, particularly the US, UK and Germany are starting to become more conscious of energy efficiency therefore more business is generated for the Datacentre industry through big data from energy monitoring. Nicola pointed out that this is not done for a purely ‘green’ reason but primarily to monitor costs which are why most universities do not monitoring as they are not responsible for the financial side of their energy use.

With there being such a focus on energy efficiency, the way Datacentres are being built has also been a changing trend with there being 25% increase in the number of retrofits of Datacentres while there was only a 2.1% increase in the number of new builds. Efficiency measures (to answer to the Press criticism) are also now determined from the outset. However despite Datacentre industry growing at a fast rate there are risks involved for the industry from the small scale of compliance to the large scale of terrorist attacks. With these risks comes an important debate that is happening within the industry, cost vs. risk.

“There is a market for MVHR but we need to get better at delivering it”, Nigel Ingram, Jospeh Rowntree Housing Trust

 Nigel Ingram continued with a discussion about social housing and the consideration of end users when designing buildings. The Joseph Rowntree Housing Trust currently looks after 2,500 homes in Yorkshire and Hartlepool. Nigel discussed one particular project the Housing Trust are involved in, the Derwenthorpe village which looks at the lessons learnt from past projects and how they can improve their buildings. The way the Joseph Rowntree Housing Trust decided on best building practices was through experimentation over four years, they built two prototypes and used 17 different methods and as many M&E components as possible including grey water harvesting and block work systems. The aim of this experimentation was to see what worked to create the best possible building.

As well as all these design considerations Nigel also enforced the importance of the end user and their lifestyles with the Joseph Rowntree Housing Trust looking at how people live in buildings and what changes in lifestyles are expected in the future and how best can the prepare buildings for that. There were three main points that made up the JRH’s strategic servicing infrastructure, the first being fibre optics. The Trust believes that with the use of technology ever increasing including internet, television packages etc. they needed to invest in a viable cabling network. However none of the big companies were prepared to discuss such a project therefore the Trust developed a joint venture with an investor to set up their own fibre optics for the estate, by doing so they satisfied the customers and set them up for any increase in connectivity in the future.

The second point the Trust considered was Communal Heating, they looked at a variety of different heating techniques for the estate such as low ground source heat pumps.  Communal Heating was decided on in 2007 from a carbon footprint point of view as at the time the Code of Sustainable Homes was announced with zero carbon targets by 2016. Communal Heating is notoriously difficult to get working efficiently, just like any heating system however after it was distilled down into the six components that worked for the Trust it was able to provide fuel security and prince control for the future residents which is what users wanted from their buildings. The system now works and is one of the only systems in the country that is successful and has been contracted for 25 yrs to a European Communal Heating group.

However Nigel wanted to point out that the Derwenthorpe village has not been completely successful, the final point in their strategic servicing infrastructure was MVHR Systems. The project has not seen any success with these systems, it has been installed in 64 houses but customer feedback has been negative and there are many issues with it. As an alternative MEV is now being used. Nigel stresses that there is a market for MVHR systems but for it to work there needs to be massive improvements in the industry in terms of commissioning, installation and maintenance. There seems to be a technology focus rather than process and this needs to change if the industry is to satisfy clients and users of buildings.

Nigel’s main focus for the Derwenthorpe project was customer satisfaction, the importance of the end user. Fibre Optics and Communal Heating was installed for the benefit of the residents of that estate as they have certain expectations of the way they live including operational and financial. The Joseph Rowntree Housing Trust has focused on the end user for their design plans rather than what should work from the industry perspective. Rigorous testing and accepting systems aren’t right has gone into making sure buildings are built as best as they can be which is important for our industry, it’s taking into consideration the mistakes made on previous building stock and learning from them and also considering the occupants and their needs.

“The Cloud is as suited to small buildings as it is to big buildings or building portfolios”, Jeremy Towler, BSRIA

 Jeremy Towler reflected on the “smart” built environment and how we get there. Jeremy highlighted that there is a lot happening and changing in our industry emphasising that we are the last industry to go digital despite there being several opportunities for digital work particularly wirelessly. BEMS will become an increasing component of buildings, modules will be built off site and therefore digital technology needs to be an important investment. Mobility will also become a more important part of the built environment, currently everyone uses a mobile but with geo-location buildings will be able to recognise everyone in buildings and respond dynamically. With this the collective voice of the occupants starts to influence the building which could be quite revolutionary.

Building Analytics are also an important step towards a “smart” built environment, increasingly buildings have sophisticated software that permits building operation and how best to optimise them. With Building Analytics becoming a more common part of our industry there has been a move towards the Cloud which has allowed data mining to reveal relationships and trends we never could have imagined. With these advances also comes the development of Smart Cities, particularly in China where there is a commitment to build at least 30. Jeremy defines smart cities as an incorporation of intelligent buildings, broadband connectivity, innovation, digital inclusion and a knowledge workforce.

But Jeremy states it’s not just smart cities we have to consider, its smart grids and smart buildings. Smart grids is an advanced power grid for the 21st century, essentially it is a decentralised multi directional model where energy and information can flow from supplier to consumer and vice versa which enables a variety of new applications for homes and businesses. Smart homes on the other hand have reached a critical mass and are due to break into the standard housing market but with this there has been an opportunity seized by the utilities who are now offering connectivity.

With smart homes becomes the internet of things and the ‘ubiquitous homes’ where sophisticated systems learn behaviour and respond accordingly, like our mobile phones that can tell us where we want to go and how we need to get there, such software will be used in our own buildings to provide our homes with the settings that we need. However the current built environment is a long way from becoming a smart industry, currently more than 75% of the building stock has no intelligent controls which is primarily to do with the age of the buildings with over 40% of total stock being built before 1960. With this in mind there is an opportunity for the industry to consider a great deal of retrofit projects but for smart technology to work to its best potential for the built environment the industry needs new skills developed through training in software and hardware analysis.

“We are now accountable for how our buildings perform “, Michael Beaven, Arup Associates

 Michael Beaven continued on this theme of the industry needing to change but instead focused on workflows. Arup has learnt that change is beneficial to the industry, adaption is necessary to meet the needs of the client. Arup have changed what they do and how they do it, learning that doing things the same way over and over again is to no benefit. However despite the need to adapt there are constants within the industry, carbon being the main issue for energy costs and emissions for companies in reputational aspects as well as the bottom line an example being Sky who are very forward looking including reducing the carbon of their set top boxes from 10 to 4 watts saving 20megawatts to the grid.

Importance of energy and efficiency is paramount but so is what we build it with. Embodied carbon is a key player in how we build our buildings now; decisions are being made on where products come from and their whole life cycle rather than primarily cost efficiency. Buildings are also being tested now, everything is monitored in our buildings so we can learn how to improve them, we are accountable for how buildings perform. From this we can learn how to design buildings that are successful for end users.

Michael also emphasised Jeremy’s point of the internet of things, how the integration of IP controls are making building betters and even the advancement of BMW considering smart transport for smart cities. Building on the interaction between traffic signals and mobile data to develop relationships between them to better control traffic, even where you park will be managed in a smart way. Another important development in terms of smart technology is that people are now connecting and sharing information on what works for a building and how best practices can be established.

One of Michael’s most important arguments was the importance of BIM and the matter that we as an industry really need to get up to speed with it. It’s client driven so we need to be on board as it is not only changing our workflows but also our business, without a grasp we lose projects. There also needs to be an acceptance that BIM is not just about 3D drawings and design but rather it should be a changing of our work streams to digital.

BSRIA Briefing panel answers questions from the audience

Michael’s final point tied in one of the key themes of the morning, customer satisfaction or rather the importance of the end user. Arup are moving towards an end user focus, designing buildings for people rather than the client or the architect. He used Sky as an example of a company championing a place for people, designing a building that understands what the user wants rather than what is considered the best design. Michael emphasised the feedback loop, empowering people to vocalise what they want in a building, what controls work for them, with that Soft Landings is critical for discovering what works and what doesn’t and resolving these issues before a project is completed.

There were a variety of thoughtful questions throughout the morning ranging from what the industry is doing to combat the UK’s power supply reducing to 2% by 2016, John Tebbit argued that the UK needs to stop investing in the UK and instead build industry abroad and import into the UK. There was also discussion on why there are so many installations problems within the industry, Nigel Ingram suggested there was too much blame placed on the end user, that there needs to be more ownership of mistakes and to learn from them if the industry is to move forward. This was the key theme throughout the morning, for the industry to move forward in any pursuit especially digitally we need to focus on trends and accept change as a good thing. But when accepting change we also need to learn from our past mistakes rather than continue to avoid them.

“Change comes from doing 100 things 1% better”, Sir Clive Woodward

Following lunch guests were treated to an afternoon speech from Sir Clive Woodward who continued the theme of change being necessary to move forward and how that worked for the England rugby team and the British Olympic team. Sir Clive’s talk looked at the 3F’s or 6F’s argument and interestingly the importance of an Australian dentist and his impact on working habits. He emphasised the effort of a whole team being behind any win and argued that talent is not enough but learning, calmness and hard work are needed to leverage it.

A special mention also goes to Chris Monson, of main sponsor Trend, who was awarded an Honorary Membership of BSRIA, becoming only the 8th person honoured. Chris accepted the award from BSRIA Chairman Leslie Smith and thanked the company as well as the industry.

A big thank you to all delegates that attended and the speakers who gave their time to the event. Also thanks to Sir Clive Woodward for being our afternoon speaker and rounding up a fantastic Briefing.

To download the presentations from the event go to BSRIA’s website.

Soft Landings – it’s not all about the cake!

A guest post by Stuart Thompson of Morgan Sindall

Soft Landings Workshop

Soft Landings Workshop

Following on from my previous post regarding the UEA low carbon project I’d like to share our progress with the inclusion of Soft Landings.

Last week our soft landings champions met for our fifth workshop, habitually in the cafe over some cake. Rod Bunn from BSRIA joined us this time to check that we were still on track, almost a year after he helped me to introduce the soft landings framework to our UEA project stakeholders. We are in Stage 2 of the framework and we are really getting a grasp of what it’s all about, Stage 2 focuses on design development, reviews similar projects and details how the building will work. Over the last two months we held some ‘reality checking’ workshops on various topics and have gathered some great feedback on our RIBA Stage D design. This will be used to shape the detail as we move into RIBA Stage E design.

During our soft landing gatherings, the champions are challenging ourselves with thoughts like:

  • are the BREEAM Outstanding & PHPP figures really relevant to our building users? How do we demonstrate their great value to the users?
  •  ensure that our soft landings champions are empowered, to ensure that they are accommodated by the wider project team
  • can we recognise and utilise people’s talents and abilities and identify the environment in which they function most effectively?
  • has the soft landings process captured all of the creative ideas from the wider project team? 

We are also looking to create a back-casting report on Post Occupancy Evaluation and occupancy satisfaction by the

Soft landings delivery plan

Soft landings delivery plan

next meeting. We glanced through a few examples of what the client would like to see. Thinking about this report now (that will be needed in say 2 years time), is an example of how the  progressive, forward-thinking approach of soft landings will provide benefit to the client at no additional cost.

Our soft landings meetings are productive, I look forward to these, and it’s not simply about the cake!

Have you included Soft Landings in any of your projects? What are the challenges and achievements you’ve faced?

How will you invest in Soft Landings?

Budgeting for better building handover

Soft Landings is an open source process designed to overcome problems after handover. It is arguably an increasingly important part of procurement philosophy. Three year periods of aftercare are regularly being considered a core element of project plans; however, with Soft Landings comes great responsibility. The question is whose responsibility is it to include Soft Landings and ensure it gets done?

All clients want high performing buildings but are not always willing to pay additional costs for the aftercare process. On the other hand the building industry has a right to demand additional fees if they are taking on more responsibilities and higher risks. This standoff won’t resolve itself without some easing of tensions.

As an advocate of better building handover, I believe that both clients and contractors need to change their expectations. More fundamentally, both sides of the contractual fence need to recognise that although they may share an ambition for a high-performing building, it does not become such until it is proved to be. This means troubleshooting the building and fine-tuning it way beyond resolving snags and defects.

Once a client acknowledges that it wants its project to adopt Soft Landings, it needs to ensure that the methodology is expressed throughout the entire process. The client should not assume that the contractor will take responsibility for it all; BSRIA has seen a number of documents that puts the responsibility of Soft Landings completely with the contractors when it should definitely be a result of negotiations between all parties involved. A client also needs to be specific in what they expect from their consultants and sub-contractors. Therefore such a project should unquestionably be a collaborative effort with equal responsibility and realistic expectations shared by all.

However, this commitment can’t come for free, which begs a question of where the costs lie, and what they amount to.

Setting aside a budget

It is essential that clients acknowledge that a budget needs to be set aside for Soft Landings, especially if they want a three year period of aftercare. A reasonable place to start is by feeling a nominal budget and then to discuss how it can be best invested, all projects are different but BSRIA believes that 0.1% of the total contract value is a good place to start. Then comes the hardest part, how do you distribute such a budget?

The budget needs to include the three year aftercare period but also other additional Soft Landings activities required during the design and construction process, such as periodic reality-checking. It is also important for clients to note that they will have additional costs at later points if they take into consideration the need for independent building performance monitoring. So, overall, does the 0.1 per cent rule hold true? By and large it’s a good place to start.

If the budget proves inadequate for the client’s ambitions, then those ambitions either need to be scaled back, or the budget increased. Undoubtedly, all parties to the aftercare process stand to gain from the lessons learned, so it is absolutely in their professional interest to meet each other halfway. 

If an agreement and a clear plan can be put into place early then it is entirely possible for such a project to be successful.

To gain a better understanding Soft Landings procurement and budgets read the full article here:

 http://www.bsria.co.uk/news/soft-landings-budgets/

COBie – it’s all about the fields

We are all becoming familiar with the 3D BIM model and the benefits it can bring to the construction process, but the challenge is to get the data it contains to the right people at the right time.  The Government has decided that COBie is going to enable us all to do this in a friendly Excel format, and as engineers, contractors and FMs are used to seeing plant performance data in schedules it should be easy to replace those with the COBie spreadsheets, right?  Well, not yet.

The idea is to complete the COBie spreadsheets and give them to the client at predetermined information exchange points, or data drops, throughout the procurement process at points where the client is required to make key decisions.  In most cases the spreadsheets can be populated by certain basic building data directly from the model.  However, the COBie UK 2012 spreadsheets do not include any fields for the performance of M&E plant or equipment – a fundamental flaw in the strategy and a serious obstacle to their widespread adoption.  Therefore, as things stand this information must be added manually at each information exchange stage, a considerable task on most projects where BIM will be used and will add significantly to the amount of effort required to deliver all the relevant data in the COBie format, as required by UKHMG.  Also, the headings used are in ‘model’ speak and not readily understood by the intended users.

Whilst the idea of producing information in a form which is readily accessible to all parties is simple, it is key that the COBie spreadsheets are easy to follow, and can be quickly understood.  To achieve this they must use a language which is familiar to construction professionals, and the right type of data needs to be included.  Unfortunately, this is not the case at present but it is hoped that feedback from the Government’s Ministry of Justice pilot projects, due to report later this year, may change this.  The key to making the construction information available ultimately to the FMs is accurate, clear, comprehensive COBie data files. A little work remains to be done to achieve this, but it should be possible.

BIM Task Group / COBIE UK 2012

COBie UK 2012 example. Building Information Modelling (BIM) Task Group

 

BSRIA Events 

Engaging with BIM http://www.bsria.co.uk/training-and-events/details/engaging-with-bim-event/ 

An introduction to BIM http://www.bsria.co.uk/training-and-events/details/an-introduction-to-bim/

Book Review: Death of a lightbulb, John Otten (2012)

Otten, John. (2012) Death of a light bulb. Blue Ocean Publishing. (ISBN 978-1-907527-08-1)

This book examines electric light, not simply as a technological invention but as the creation of a worldwide industry which has transformed the quality of life for millions of people. The humble domestic light bulb has long been an icon for inventiveness and inspiration. It well deserved this recognition when its impact on civilization in the last century is considered. Much has been written about the early struggles to find suitable materials for filaments and machinery capable of creating a high quality vacuum. Electric light was highly desirable and a great improvement over the flickering and odorous alternatives. It directly led to public electricity generation and distribution. It is difficult for those living in the Western World today to imagine life without electricity.

To meet the demand required investment and speculation on an amazing scale together with mass production of the lamps. It is this story about creating industrial empires and the lengths then taken to protect their profits and assets. Competition and co-operation existed side by side with all the weapons of modern business. These included controlling ownership by shareholders, webs of intermediary companies, and legal contests. The application of patents provided protection and the opportunity to control market penetration. Global transport and distribution had not been fully developed so to reach distant markets could mean agreements with companies considered as direct competito rs nearer to home. Cartels could influence supply and retail pricing. Many of these actions would be considered dubious today with calls for greater transparency and level playing fields.

This story has not been documented for many years and John Otten has provided an insight into the complex web of a modern, highly successful industry. His extensive research into areas not always well documented is to be commended and is augmented by his long career within the lamp making industry. Previous work was written around the first half of twentieth century and information regarding the second half of twentieth century makes a valuable addition to lighting history.

The title makes reference to the final twist in the story. Most products follow a conventional life cycle with sales rising to a peak and slowly going into decline. With many modern devices this life cycle can be a very short period of just a few years, but the light bulb appeared to be almost everlasting. It did not fade away but has been virtually executed by European legislation banning its production and sale. This policy has also been accepted by other countries around the world but is not yet universal with the United States, New Zealand and Canada still fighting in some quarters for its survival. This final phase is still being acted out and the full story behind it may not appear for some time but in the meanwhile the life of the lamp making industry is a worthy model to study of how to turn a simple idea into a life changing experience for millions of people.

Smart Grid Impact on Intelligent Buildings

BSRIA WMI has just completed a major research study for the Continental Automated Buildings Association (CABA); an international industry association based in North America, dedicated to the advancement of intelligent homes and intelligent buildings technologies. The study was sponsored by 29 CABA member companies which included a broad mix of disciplines, from building management systems providers to electricity utilities.

What are Smart Grids?

The study, entitled “Smart Grid Impact on Intelligent Buildings” estimates that the North American smart grid non-residential marketplace was worth approximately $6.6 billion in 2011 and should reach $8 billion by 2013.

The smart grid will be an advanced power grid that adds and integrates many varieties of digital computing and communication technologies and services to the power-delivery infrastructure. It will allow bi-directional flows of energy, for example from renewable energy sources, and two-way communication and control capabilities.

The Smart Grid Framework

Benefits

The smart grid will benefit utilities in a multitude of ways, most importantly helping them to flatten the demand curve, which will result in increased grid stability and reliability, but also to help reduce the need for expensive standby generating capacity. At the same time, it will empower end-customers, allowing them to save on energy costs and buy at optimal times of the day when prices are lower.

The study found that the fastest growing components of the smart grid market are grid applications, followed by demand response and peak load management, building energy management systems, and smart meters. Whilst only a small proportion of building management systems are ready to be connected to the smart grid today, the study noted that smart grid development will become a major driver for the development and deployment of more intelligent building technologies.

The Future

The study emphasizes the need for innovative solutions to enhance the efficiency and effectiveness of power generation, transmission and consumption capacity. Intelligent buildings are prime examples of innovative technology that will aid in the deployment of new smart grid infrastructure.

More utilities are now modernizing their infrastructure to make their grids “smart” in order to improve the efficiency, reliability, economics and sustainability of the electricity services delivered to both residential and non-residential building owners. The research found that there is a direct correlation between having a smart grid and attracting more customers and that in time, it will be this that helps to enhance the overall attractiveness of an area for business.

The study is currently under embargo but will be available for purchase by any interested companies from June 2012.

BREEAM – What’s your opinion?

BSRIA recently held an event as part of our Building Environmental Assessment Network to discuss opinions on BREEAM.  This is always a hot topic with lots of views, and this event was no different.

For those new to the world of environmental assessment, BREEAM (the BRE Environmental Assessment Method) is a criteria based assessment of the sustainability of a building.  Developed by the BRE in 1990, it is now the UK’s most used environmental assessment method, and is often a requirement of planning.  More details can be found at www.breeam.org.

The aim of the event was to see if the 2011 changes were sitting well with the industry or needed changing.  It was also a chance to give BRE feedback directly for future changes, or problems that have been encountered.

Particular issues raised were:

  • The transparency of some of the calculation methods
  • Getting feedback or answers to queries from BRE
  • Issues with the energy credits in the 2011 version, especially when dealing with CHP units. 
  • Some refrigeration related credits appear impossible to get

Questions raised in the presentations were:

  • Is the value of each credit appropriate?
  • Is the industry ready for all the changes made in 2011?
  • Is the qualification route for assessors and BREEAM APs appropriate?
  • Is there need for more information for the industry?

The presentations given on the day are available from: http://www.bsria.co.uk/services/membership/networks/building-assessment-network/

So do you have an opinion on BREEAM?  What works well and what needs some adjustment?  Of particular interest would be your experience of the latest version of BREEAM, i.e. 2011.

Room temperature measurement

Measuring temperature in a room is one of the things we do most often as building services engineers.  It seems straightforward, but is it really as simple as it appears?

Specifications often state that a certain temperature must be maintained in a building, but what does this mean? Designers need to know what they are designing for. Contractors need to know where to put the sensors. Commissioning engineers need to know how to confirm the building meets the specification and last, but not least the occupants need to be satisfied and comfortable.

I would like to know what you think and what you do for temperature measurement….

  • Do you measure air temperature, radiant temperature, environmental temperature or something else?
  • What height do you measure it?
  • Where in the room? At desks or in the centre?
  • At the worst spot, the best spot or the average?
  • How long do you measure for?
  • Should you take the average over time, the lowest or the highest?
  • How long should you leave the system to warm up or cool down?
  • What do you use to measure temperature; liquid in glass bulb, thermistor, thermocouple or infrared?
  • How is your thermometer or temperature sensor calibrated and how often?
  • Should we really be specifying temperature at all?  It is often occupant comfort that matters most.

This might lead to a Best Practice Guide or a series of guides because we could also look at other measurements for building services such as water temperature, humidity and air flow. You can feedback using the form below or by commenting on this post.

%d bloggers like this: