The wellbeing and environmental effects of agile working

by David Bleicher, BSRIA Publications Manager

How many times in the last few months have you started a sentence with “When things get back to normal…”? For those of us whose work mostly involves tapping keys on a keyboard, “normal” implies commuting to an office building five days a week and staying there for eight or more hours a day.

When lockdown restrictions were imposed, things that were previously unthinkable, such as working from home every day, conducting all our meetings by video call, and not having easy access to a printer, became “the new normal”.

One thing the pandemic has taught us is that changes to our work habits are possible – we don’t have to do things the way we’ve always done them. Since lockdown, agile working has been high on companies’ agendas; but agile working has a broader scope than flexible working. It is defined as “bringing people, processes, connectivity and technology, time and place together to find the most appropriate and effective way of working to carry out a particular task.”

Working from home with a cat

The triple bottom line

Agile working is indeed about much more than changing people’s working hours and locations. It’s about how people work – becoming focused on the outcome rather than the process. It’s about making the best use of technology to achieve those outcomes and it’s also about reconfiguring workplaces to better suit the new ways of working. But, when considering these outcomes, we should be looking further than the financial bottom line. The term triple bottom line is a framework that also brings social and environmental aspects into consideration.

How, when and where people work has a major impact on their wellbeing. The past few months have served as an unintentional experiment in the wellbeing effects of mass home working. Some people are less stressed and more productive working from home, providing they have regular contact with their colleagues. Other people – particularly those who don’t have a dedicated home working space – returned to their offices as soon as it was safe to do so. It depends on the individual’s preferences, personal circumstances and the nature of the work they do.

On the face of it, it would seem that increased working from home or from local coworking spaces would be a win-win for the environment. Less commuting means fewer CO2 emissions and less urban air pollution. But a study by global consulting firm and BSRIA member, WSP, found that year-round home working could result in an overall increase in CO2 emissions.

In short, it reduces office air conditioning energy use in the summer, but greatly increases home heating energy use in the winter – more than offsetting carbon savings from reduced commuting. Perhaps what this highlights most is just how inefficient the UK’s housing stock is. If we all lived in low energy homes with good level insulation and electric heat pumps, the equation would be very different. Perhaps a flexible solution allowing home working in summer and promoting office working in winter would be best from an environmental perspective.

A possible long-term effect of increased home working is that some people may move further away from their offices. For example, someone might choose to swap a five-days-a-week 20 km commute for a one-day-a-week 100 km commute. If that is also a move to a more suburban or rural location with more scattered development, less public transport and fewer amenities within walking distance, then (for that individual at least) there’ll be an increased carbon footprint. Not very agile.

Impact of technology

There’s another aspect that may not yet come high up in public awareness. Remote working is dependent on technology – in particular, the video calls that so many of us have become adept at over the past few months. All this processing burns up energy. The effect on home and office electricity bills may be negligible because the processing is done in the cloud. This isn’t some imaginary, nebulous place. The cloud is really a network of data centres around the world, churning data at lightning speed and, despite ongoing efforts, still generating a whole lot of CO2 emissions in the process. Videoconferencing definitely makes sense from both an economic and environmental perspective when it reduces the need for business travel, but if those people would “normally” be working in the same building, isn’t it just adding to global CO2 emissions?

We don’t yet know what “the new normal” is going to look like. Undoubtedly, we’re going to see more remote working, but responsible employers should weigh up the pros and cons economically, environmentally and socially. Terminating the lease on an office building may seem like a sensible cost saving, but can a workforce really be productive when they never meet face-to-face? Does an activity that seemingly reduces CO2 emissions actually just increase emissions elsewhere? Any agile working solution must take all of these things into account, and not attempt a one-size-fits-all approach to productivity, environmental good practice and employee wellbeing.

For more information on how BSRIA can support your business with energy advice and related services, visit us here: BSRIA Energy Advice.

What makes a good PICV?

by Andrew Pender, National Sales Manager at FloControl Ltd.

Over the last 5 years, PICVs have been widely accepted as the best method of terminal control in variable flow systems due to their energy saving potential.  The surge in popularity has led to an influx of products with varying designs, features and functionality.  This article reviews some of the mechanical PICV design elements and how they can impact on the PICV’s performance in an applicational context.

Where do we start?

To help specifiers and project engineers assess which PICV is best suited for an application, the BSRIA BTS1/2019 standard has been developed to provide a consistent test method for PICV manufacturer’s products to be benchmarked against.

Manufacturers should be able to provide test results in line with this technical standard which covers:

  • measured flow vs nominal flow
  • pressure independency or flow limitation
  • control characteristics, both linear and equal percentage
  • seat leakage test

Repeatability & Accuracy are central to the tests and they are key to good temperature control and realising the full energy saving potential of a PICV installation.

An accurate PICV means the measured results will be equal or very close to the manufacturer’s published nominal flow rate each time it is measured, known as low hysteresis.

Accuracy has a positive impact on a building’s energy consumption.  “Measured over time, a 1% increase in the accuracy of a PICV can result in a reduction of around 0.5% in the building’s overall hydronic energy consumption” (FlowCon International).

Valve accuracy is driven by the design, manufacturing process and material used for the internals of the valve.

  • The design of the PICV should allow for Full Stroke Modulating Control at all flow settings without any stroke limitation.  The flow setting and temperature control components should operate independently.  Some PICV designs use the stroke of the actuator stem to set the flow rate resulting in limited stroke and control.  This can cause issues at low flow rates whereby the PICV effectively becomes on/off irrespective of actuator selection.  
  • The manufacturing process and the component materials also contribute to accuracy. For example, injection-moulded, glass-reinforced composite materials cope better with water conditions that valves can be exposed to.  They also have less material shrinkage than other materials, delivering higher accuracy than valves that use alloy components.

What else should be considered?

The importance of accuracy and repeatability are paramount when selecting a PICV however there are other factors that should be considered:

  • Wide flow rate range – including low flow rates for heating applications, ideally covered by a small number of valves.
  • Setting the flow rate – setting the PICV can influence the accuracy. There are various scales used including set points related to flow rates and percentages. PICVs with very detailed scales with small increments between set points are more difficult to set accurately, leading to higher tolerances than the BSRIA standard recommended + 10%.
  • Wide ΔP Range – low start up pressure. To operate satisfactorily, the PICV requires a minimum pressure differential to overcome the initial spring resistance within the PICV, enabling the spring to move and take control. Care should be taken to ensure the minimum pressure differential is as low as possible to maximise the energy saving potential of the system.  The maximum DP should also be considered to ensure the PICV operates effectively under part load conditions.
  • Dirt tolerance – the Valve Control Opening Area [A] on all PICVs, irrespective of the manufacturer, is identical for each flow rate. The shape of the Control Area can be different depending on the valve design. A Rectangular flow aperture is more tolerant than an Annular flow aperture. Debris will pass through the rectangular aperture more easily.
  • Removable inserts – deliver the greatest flexibility and serviceability.  Products can be easily serviced in line without disruption. This is especially of value when water quality is poor or when flow requirements change due to changes in space usage.  Inserts can also be removed during flushing.  Valve bodies can be installed with blank caps eliminating the risk of damaging or contaminating the PICV element, whilst having a full-bore flushing capacity.
  • Installation – PICVs in general have no installation restrictions however in line with BSRIA BG29/20, it is recommended that PICVs should be installed in the return branch as small bore PICVs will have a high resistance which will hinder the flushing velocity during the forward flushing of terminal units.

Making the right choice

There are many aspects for specifiers and project engineers to consider when selecting the right PICV for an application.  The BTS1/2019 standard provides an excellent benchmark, but the individual designs also need to be carefully considered.  A correctly selected PICV will ultimately lead to a more comfortable indoor climate with better control of the space heating and cooling as well as potentially reducing the pump energy consumption in a building by up to 35%.

This post was authored by Andrew Pender, National Sales Manager at FloControl Ltd. All views expressed are those of the author. If you belong to a BSRIA Member company and wish to contribute to the BSRIA Blog, please contact marketing@bsria.co.uk

Clean Indoor Air for Healthy Living – New Air Filter Standards

 

Breathing air is a fact of life. We all do it. Unfortunately the air that comes into our bodies often carries unwelcome pollution. This air pollution comes in the form of a mix of toxic particles and acidic gases.

Urban traffic air pollution has been a rising public concern especially since the recent VW scandal demonstrated car manufacturers have been more interested in dodging emission tests than providing clean running diesel engines.

The government is also slow to take action to remedy the situation having been responsible for previously promoting use of polluting diesel engines. If you live in a polluted urban area or close to a source of air pollution such as an arterial road, industrial plant or power station then you will be exposed to this invisible health hazard.

These airborne contaminants can penetrate in your lungs and can enter your bloodstream causing damage to health and diseases. The recent study from Lancaster University shows that ultrafine combustion particles generated from high temperature fuel combustion have been found in heavy concentrations in the brains of people suffering from early onset of Alzheimer disease and dementia.

This is a concern because it indicates that traffic air pollution can not only damage our health physically but also mentally. A real and current problem; what is the solution?

What measures can we as individuals take to protect ourselves and minimise our exposure to outdoor sourced air pollution? Well it is not all bad news there are things that can be done and actions taken.

For a start we spend typically about 90% of our time indoors so our direct exposure to outdoors air is reduced as a result. The buildings we occupy at work and at home to some extent act as a haven against this threat to our health.

There are also air monitoring and measuring devices that are relatively affordable coming onto the market. As Lord Kelvin the distinguished scientist once stated. ‘To measure is to know.’ It is now possible to use newly available and affordable devices to measure pollutants of concern and compare them with published World Health Organisation limits. Some of these measuring devices also have the capability to control air purifiers and air cleaning devices.

The two outdoor urban air pollutants most commonly identified as health hazards are PM1 combustion particulate and nitrogen dioxide. The World Health Organisation and Royal College of Physicians recent report ‘Every breath you take’ go into detail about the health implications. PM1 is a mass measurement of particulate matter one micron diameter and below in size range. A micron is one thousandth of a millimetre.This is very small as any particle below 10 micron dia. cannot be seen unaided by the human eye. A human hair is typically 70 micron dia.

Once the seriousness of the problem of polluted indoor air has been established then action can be taken. Although a relatively airtight building will offer some protection against urban traffic pollution there will be penetration into the building by opening windows, doors, passage of people and ventilation air systems. Typically the penetration for PM1 and nitrogen dioxide will be in the range 30% to 70%.

The only effective solution currently available to reduce this level is to use mechanical air filtration.

There are two new ISO World standards to test air filters recently published that offer filter testing and classifications to aid effective selection of HVAC air filters.

ISO 16890:2016 is running alongside EN779:2012 in the UK during the transition period until June 2018 at which point EN779:2012 will be withdrawn by BSI.

ISO 16890:2016 enables selection of filters to remove PM1 particulates to a high level of efficiency. In the new classification system ePM1 85% would equate to a good F9 filter but is more useful and informative notation to the end user because it actually says what the filter will achieve. Filtration efficiency ‘e’ will remove PM1 size range particles to an efficiency of 85%.

For the removal of molecular gas contaminants such as nitrogen dioxide the new World filter test standard is ISO 10121:2013. A good nitrogen dioxide removal test reading for a single supply air pass would be 80% – 90% initial efficiency.

These high filter removal efficiencies (80% – 90%) are necessary when air pollution levels are routinely higher than WHO limits by a factor of four or five times in UK city centres.

This is fine for filters in large air handling unit systems in central London but what about me at home? Is there another option available apart from keeping windows and doors shut on bad air pollution days?

The answer is that a good recirculation Air purifier unit positioned close to the person needing clean air will give the healthy solution needed. A well designed unit can provide E11 – H13 Hepa particulate filtration with molecular gas filtration for the removal of nitrogen dioxide, but also the commonly encountered indoor sourced air pollutants such as volatile organic compounds (VOC’s) and aldehydes such as Formaldehyde. These units are especially valued by asthmatics and allergy sufferers.

This blog was written by Peter Dyment, Technical Manager at Camfil Ltd. To find out more information about IAQ please check out BSRIA’s website.

 

The Lyncinerator on… Bathroom taps

This blog was written by Lynne Ceeney, Technical Director at BSRIA

Don’t get me started.  We’ve all been here.  You’re out and about, maybe having a meal, going shopping or visiting offices, and you have to use an unfamiliar bathroom.   You approach the basin to undertake that most basic of human hygiene tasks, washing your hands.  And looking around, you realise you have absolutely no idea how to turn on the tap…  and in many cases, you have absolutely no idea where the tap is.  If you are lucky, there is an obvious spout from which the water should come out.  However in many cases, the detective work starts here – the spout might not actually be in a tap, it might be be under the shelf, or embedded in the granite.  Second detective task:  getting the water to flow.  Sometimes it is a button.  Sometimes a toggle. Sometimes something to turn.  Sometimes a sensor – which sometimes works.  Let’s assume you have managed to actually get some water to use, and you can start on your third detective task – getting the temperature you want.  Often helpful “danger” notices warn you that the hot water is hot (really Sherlock??  – well, I guess putting up a notice is easier than sorting out the supply issue). Clearly many, tap designers are a fan of puzzles, and assume you are too.  No clues to indicate how to adjust temperature, no blue or red symbol to help you out.  You have to eliminate the suspects until you find a way that works.  And after the application of a lot of thought and puzzling, hopefully you get to wash your hands.

Presumably someone thought these taps look great – but ‘clean lines’ are triumphing over clean hands. Whilst this functional obfuscation is frustrating for the average user, it is nigh on impossible for people with learning disabilities, confusion or dementia, something that we can expect to see more of in an aging population. It leads me to wonder what the tap designers and those who chose the bathroom fittings were thinking about.  Probably not the user.

Why should you have to solve a series of problems in order to undertake such a basic operation as washing your hands?

Surely the purpose of designing a functional object is to get it to work, and that requires a combination of form, technology and human behaviour.  The human / technology interface is a critical element of design.  It is irritation with taps that has prompted my thinking, but it led me to wider thinking about the design of buildings and their systems, and a series of questions which maybe we should use as a checklist.

Human error is cited as one of the problems leading to poor building performance, but isn’t it really about design error?  Are we more concerned with what it looks like rather than how it will work?  Are we introducing complexity because we can, rather than because we should?  Why don’t different systems work with each other? Are we thinking about the different potential users?  Do we understand the behaviour and expectations of the people who will use the building or are we expecting them to mould to the needs of the building? Is design that confuses sections of the population acceptable?   Are we seeking to enable intuitive use or are we setting brain teasers? Do we care enough?

We should wash our hands of poor design.  But once we have washed them we have to dry them.  And you should see this hand dryer.  Don’t get me started…

Lynne Ceeney will be contributing a bi-monthly blog on key themes BSRIA is involved in over the next year. If there’s something that ‘gets you started’ let us know and we may be able to draw focus to it in another blog. 

Contractors can’t build well without clients that lead

Did anyone see the recent news story on the Edinburgh PFI schools with structural failures? In 2016 we shouldn’t be constructing buildings with feeble brickwork. We have Victorian and Edwardian schools that have been standing for over 100 years without these problems. More ironically we have 1960s CLASP schools – built on a budget with the flimsiest of constructions – still standing and performing their role well after their sell-by date. OK, they’re usually freezing in winter and boiling in summer, with asbestos in places a power drill shouldn’t reach, but at least they’re still standing.

The reasons for these high profile failures are easy to park at the door of the PFI process. One can blame cost-cutting, absence of site inspections, and lack of quality control. Some even say that the ceding of Building Control checks to the design and build contractor is a root cause: site labour can’t be trusted to mark their own exam paper when their primary interest is to finish on time and under budget.

Some commentators blame the design process, and bemoan the loss of days of the Building Schools for the Future programme when design quality was overseen by the Commission for Architecture in the Built Environment (CABE). The erstwhile CABE may have tried to be a force for good, but project lead times become ridiculously long and expensive. And would it have prevented structural failures? Hardly likely.

The one cause of these failures that doesn’t get enough press coverage is the important client leadership and quality championing. It can be argued that clients get what clients are willing to pay for, and there’s no industry like the construction industry for delivering something on the cheap. The cost-cutting, the emphasis on time and cost at the expense of quality control – all this can be pinned on a client base that does not lead, demand, oversee, and articulate what it wants well enough to prevent the desired product being delivered at the wrong level of quality at the wrong price.

Which means that clients have to a) get wiser on what can go wrong, b) get smarter with their project management, and c) articulate what they want in terms of performance outcomes. Truly professional designers recognise this, and are prepared to guide their clients through the shark-infested waters of writing their employers requirements. But once that is done the client’s job is not over. They can’t simply hand the job over to the main contractor and turn their back until the job is complete. They need to be closely involved every step of the way – and keep key parties involved beyond practical completion and into the all-importance aftercare phase.

Soft Landings provides a chassis on which focus on performance outcomes can be built. The chassis provides the client with a driving seat to ensure that standards are maintained, along with a shared construction team responsibility to make sure the building is fit for purpose.  The forthcoming BSRIA conference Soft Landings in London on 23 June is a good opportunity to learn how this can be done. It will focus on workshops where problems can be aired and solutions worked through. It will be led by experts in the field who can suggest practical solutions for real-world projects. Why not book a place for you and a client? For more information visit the BSRIA website. 

University of Reading Research Study: Indoor Environmental Quality and occupant well-being

Gary Middlehurst is a post-graduate student at the University of Reading's School of Construction Management and the Technologies for Sustainable Built Environments

Gary Middlehurst is an Engineering Doctorate (EngD) student at the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE)

Looking at a new approach for determining indoor environmental quality (IEQ) factors and their effects upon building occupants, BSRIA has provided the University of Reading’s School of Construction Management and the Technologies for Sustainable Built Environments (TSBE) Centre access to their Bracknell office building known as the “blue building”.

 IEQ factors are proven to affect occupant well-being and business performance, however, for the first time, actual environmental and physiological field measurements will be compared. New research therefore has been developed by the University of Reading, which will seek to understand these relationships and the potential impacts of known IEQ factors on perceived levels of occupant satisfaction and well-being.

Understanding fundamentally how IEQ factors can affect building users, will allow system designers to finally visualise occupant well-being, personal satisfaction and productivity as part of a holistic business performance model. Based upon empirical measured IEQ factors and surveyed occupant data, the research hypothesis proposes that high-density occupation can reduce office workplace environmental footprints significantly when physiological impacts are understood.

The research methodology brings together measured environmental characteristics, physiological performance measurements, POE survey responses, and then uses an Analytic Hierarchy Process (AHP) to assess existing workplace designs.

Gary Middlehurst blogReducing operational costs and increasing occupant satisfaction and well-being is seen as a distinct competitive advantage, however, businesses remain focused towards meeting the challenges of energy security, demand side management and carbon commitments. The research, therefore, will provide empirical data to create informed business decisions focused upon these challenges. This is done by increasing the importance of well-being and by defining performance as a key metric.

Field research is currently underway on the top floor within the “blue building”, where 4 willing volunteers are participating in physiological sensory measurements and POE response surveys. The project will be running for 12-months, with the initial current 2-week data acquisition period being repeated a further 3 times during winter, spring and summer of 2015/16.

The research is also being conducted at two other similar office environments in Manchester and London, and seeks to support the hypothesis that hi-density workplaces are a further sustainable step in designing and operating more efficient and effective intelligent buildings.

%d bloggers like this: