Shift in Construction Technology for a ‘post-Covid, pre-vaccine’ era

by Amy Butler, JB Associates

In 2017, McKinsey Global Institute slated construction for evolving at a ‘glacial pace’ due to its ranking as the least-digitised industry in Europe. While plenty of technological advances were pitted as ‘on the horizon’, many companies were reluctant to take the necessary steps to push forward with digitisation. Critics warned that a lack of innovation would lead to companies folding, although it took a global pandemic before this prophecy materialised and those without suitable digital infrastructure in place were shaken.

The pandemic is now considered a catalyst for industry improvement, propelling construction out of its ‘glacial’ evolution and deep into the digitised era. A recent study undertaken by Procore found that two thirds of the surveyed construction companies had rolled out new technology during the lockdown, with 94% of these seeing an improvement to productivity and teamwork. However, what exactly are these technologies and where do we go from here?

Smart Buildings

While we are all now experts in the world of Zoom and Microsoft Teams, the challenge lies in returning safely to offices and various other workspaces. With many UK companies pushing for their teams to be back in work physically, how do we ensure that commercial buildings remain safe? Smart Building technology is reshaping the workplace and ensuring safety as well as energy optimisation. Buildings with integrated BMS systems and IoT sensors were already an option before the pandemic. Now, they are a wise choice for business owners.

Essential for a post-Pandemic and pre-Vaccine era, IoT systems can control air quality and ventilation. High-performance air filters and moisture controls will now be key due to Covid-19’s airborne nature. OKTO Technologies (Smart Buildings specialists) have even launched an Artificial Intelligence-led air filtration solution that is reportedly so advanced it can eliminate 99.98% of SARS-CoV-2 (the virus that causes Covid-19) from the air in 10 minutes.

Similarly, density control counters and heat detection cameras can be incorporated into BMS systems to ensure that viruses are less likely to spread or enter into a facility. Airports have been trialling infrared cameras to measure body temperatures for a fever and several companies offer leases or installations for these cameras. While they are not a definitive medical diagnosis, they add a level of reassurance. This may be the aim of much of this technology; a form of due diligence in protecting staff.

BIM & VR

Technological advances are also prominent on site. Construction News reported that contractors employed for the Nightingale Hospital projects found huge value in Autodesk programs. A vital tool for tracking constant streams of updates in rapid working conditions, construction management software proved its worth in recognisably challenging projects across the UK.

As social distancing measures remain in place, it is imperative that technology is prioritised; virtual communication is still far safer than face-to-face. Software like BIM is also providing insights and tools to manage projects during a more challenging time. Even more impressively, companies are merging BIM models with the cloud, GPS and Virtual Reality software. This development means a ‘digital twin’ of a facility can be created and it opens a world of opportunities for Project Management and Design efficiency.

Remote working could even be a trend that stays long past pandemic precautions. Drones have been used previously to reduce safety hazards for technicians and now may be utilised in future remote inspections. Similarly, researchers at the University of Strathclyde have been given £35,000 in funding to create a remote inspection system. The 3D immersive building environment program aims to reduce risks by eradicating the need for Quantity Surveyors or Health and Safety Inspectors to be physically present on site.

Whether enabling remote working, improving the health and safety of commercial buildings or aiding on-site processes, technology has become a necessary tool for construction in the last 6 months. The companies that had embraced digitisation long before 2020 were undoubtedly the ones able to continue thriving in the tough lockdown period. The next step is for many companies is to streamline their management processes or workplace systems to ensure technology works for them as efficiently as possible. Breaking out of its inertia, construction’s ‘glacial evolution’ is firmly in the past and technological advances are here to stay.

This post was authored by Amy Butler of JB Associates – building consultancy specialists. The views expressed are those of the author.

BSRIA Members wishing to make a guest contribution to the BSRIA Blog should please contact marketing@bsria.co.uk

Maintenance of drainage systems to prevent flooding and water pollution

By David Bleicher
BSRIA Publications Manager

Every building has a drainage system. In fact, most have two – a foul drainage system that takes waste from toilets, showers etc. and a storm/surface water drainage system that takes rainwater from roofs and paved areas. Older buildings may have a combined system, and in some locations the infrastructure buried under the street is a combined sewer – a legacy from the pioneering days of city sewerage systems.

As with maintenance of any building services systems, the first step is to know what you’ve got. Every site should have a drainage plan, showing which drains are located where, what direction they flow in and what they connect to. If there isn’t one, it’s not hard to create one – even though the pipes are buried, there’s plenty of evidence above ground in the form of manholes.

When there is a drainage plan, it’s worth checking how correct and up-to-date it is. Sometimes, the exercise of doing this brings up evidence of mis-connections, such as a new loo discharging into a storm manhole. It’s also worth marking drain covers with the service (F for foul or S for storm) and a direction arrow.

Drainage manhole over showing 'S' arrow to indicate storm drainage and direction of flow.

In foul drainage systems, the biggest headaches are caused by things going down the drain which shouldn’t – like wet wipes, sanitary products and hand towels. So the best form of preventative maintenance is to keep building occupants informed, with polite notices and clearly-marked bins in strategic places. Then there is the fats, oils and greases (FOG) that go down the plughole in catering establishments. If these find their way into the drains and sewers, they’re pretty much guaranteed to solidify and cause blockages – sometimes known as ‘fatbergs’. That’s why there should always be an interceptor in place, also known as a grease trap. This needs maintenance – the generic frequency for cleaning out a grease trap, stated in SFG20 (a common approach to planned preventative maintenance), is monthly. But this will be highly dependent on how the facility is used.

If blockages go unchecked, they may also go unnoticed. That is until sewage starts backing up into the building, or overflowing into storm sewers, which eventually discharge into lakes and rivers. These are delicate ecosystems, and the introduction of detergents and faecal matter can be very harmful to aquatic life and of course humans.

Rain, can pick up contaminants from both the air and the land, so once it has reached a storm/surface water drainage system, it has picked up dirt, oil and chemicals from air pollution, roofs and paved areas. Traditional systems have no means of dealing with this, and also must be sized for occasional extreme storm events, so the pipes are very large and mostly used at a fraction of their capacity. Sustainable drainage systems, or SuDS, attenuate the flow of rainwater to watercourses and emulate the way natural ecosystems treat this water. But they need maintenance. For example, any tree routes that could block a soakaway should be trimmed annually, and green roofs may require weeding on a weekly basis during the growing season.

For more information on the maintenance of drainage systems, please explore the BSRIA Information Service

Infrared technology protecting against Ebola

This blog was written by Alan Gilbert, General Manager of BSRIA Instrument Solutions

This blog was written by Alan Gilbert, General Manager of BSRIA Instrument Solutions

As Heathrow and many other international airports start to employ screening procedures in the fight against the spread of Ebola, BSRIA Instrument Solutions General Manager Alan Gilbert discusses how the technology will be used.

Q. What technology will be used at Heathrow?

Heathrow will be using IR (Infrared) spot type thermometers to take skin temperature of people that have been identified as coming from areas affected by the current Ebola outbreak. These thermometers can detect skin temperature at a distance, which in this application means there is no direct contact between passengers being screened and the instrument being used.

Q. A number of international airports are starting to use thermal imaging camera to screen for the Ebola virus, why is that?

Although there is a low risk of catching Ebola by sharing a plane with an infected person Ebola is a particularly virulent virus and nations and airlines are acting responsibly by identifying any infected travellers prior to boarding the plane or entry into a country. The use of thermal imaging cameras is a cost effective unobtrusive means of detection to screening a large volume of travellers.

Q. Why use thermal imaging cameras?

Thermal Imaging cameras are used to identify and measure the amount of heat that any object produces and emits, this includes people. The thermal imaging equipment used is able to identify the temperature of a large number people simultaneously and with processing software they can identify quick any individuals with potentially a higher body temperature.

Q. What will the thermal image show?

It depends on the technology which is being, but in general terms the thermal image will show that an individual has a higher than normal body temperature and further testing and questioning is needed.

Q. Has thermal imaging been used before?

Yes, in the past when we had a SARS outbreak some high tech thermal imaging cameras were used to identify individuals with increased Thermal image crowdtemperature through an individual’s sinus tracts. Cameras were used around the world in this application as a tool to reduce the spread of the disease and to quick spot individuals who may be at risk from infection.

Q. Which technology is better for screening?

Both thermal imaging cameras and IR thermometers are equally appropriate for use in screening as both technologies will identify passengers who are emitting a higher temperature, this will then allow the authorities to identify passengers who need to undergo further medical examinations.

Q. What happens if somebody is stopped as a result of the screening?

There will be a medical team at the airport who will quarantine the individual and undertake a further medical examination, this will involve undertaking a blood test to allow a proper diagnosis to be made.

Q. If you get stopped as a result of the screening does it mean you are suffering from Ebola?

Not necessarily, you could have no more than a common cold or an upset stomach, conversely somebody with Ebola may be in the incubation period of the disease and as a result not show up as being infected as a result of the screening, due to the numbers of people travelling it would not be practicable to undertake full medical examinations on all travellers, so using thermal imaging cameras is considered to be the best method for undertaking mass screening on travellers.

 

 

 

Safety in Building Services Design

This is a guest post by Richard Tudor of WSP

This is a guest post by Richard Tudor of WSP

Space, and the cost of providing space, for plant and building services  distribution is at a premium and designers often come under pressure to reduce the spatial requirements for building services installations. In order to discharge their obligations, designers must take care to provide safe means of access for installation, maintenance and equipment replacement.  In addition designers need to be aware of the regulations and legislation requirements that a design may impose on the installer and end user as a design solution can often impose additional legal

responsibilities, particularly in undertaking associated operation and maintenance activities. However, the active and continuing attention to safe access issues, throughout the design stages, is not always achieved as the designers’ attention can often concentrate on what is perceived to be more immediate concerns.

BSRIA’s publication Safety in Building Services Design BG55/2014 has just been published which provides guidance on designing for safety in both new and refurbishment projects.

The publication is aimed at designers and includes information on:

  • relevant legislation including CDM
  • hazards and risks including managing risk in the design process
  • understanding space requirements and access provision
  • designing for maintenance
  • plant room design
  • communication of risk information including representation of risk information on drawings

BG55/2014 Safety in Building Services Design

BG55/2014 Safety in Building Services Design

However, the diversity in type, configuration and possible location of plant, means it is not possible for this publication to give definitive guidance for all installations.

The publication provides a practical guide to assist the design process, aid design reviews together with providing a better understanding in designing for safety.  For example, included in the publication is a checklist on the considerations in designing for health and safety which can be used as part of the technical design quality review process.  In the pdf version of the publication this is included in an editable Excel format. Influencing factors, considerations and space requirement data useful in the design decision process with respect to providing safe access are highlighted in the publication.

The poor provision of safe access for maintenance could result in an increased likelihood of cutting corners or omission of maintenance and repair activities. This in turn, could result in building services failures that could adversely affect safety, legal compliance, productivity and quality of the environment.

BSRIA launches a new course on the 12th November 2014 providing guidance in designing for health and safety in the space planning of building services with respect to operation, maintenance and plant replacement. The course is intended for professionals involved in the design of building services but is equally relevant to contractors and other professionals within the industry. Young engineers in particular would benefit from the course.

On completion of the course delegates will be able to:

  • understand the specific considerations with respect to designing for safety for building services
  • identify discipline specific considerations in designing for safety
  • challenge designs in relation to health and safety in the design, construction and operations of building services so as to improve performance
  • understand relevant H&S legislation, codes of practice and guidance
  • understand the relationship between building services design and maintenance operations
  • understand the management of hazard and risk together with control strategies
  • locate information relating to health and safety to assist in design process
  • understand the consequences of failing to manage health and safety effectively
  • understand the importance of communication and provision of information in the design process

Richard Tudor is a Senior Technical Director at WSP and has been an integral part of the WSP Group Technical Centre for over 14 years. His responsibilities include technical quality, specification development, technical knowledge management, delivering training, designing for safety, providing technical support, and improving project delivery.

%d bloggers like this: