Global BEMS Market set to Approach $7 billion by 2020

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

If I could point to a market which is already worth some $3.5 billion, or 3 billion Euros, and which is growing globally at well over 10% per annum, at a time when growth in building automation is a fraction of that, I suspect that many investors and industrialists would bite my hand off. This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Even Europe, which currently accounts for almost half the current Building Energy Management Systems (BEMS) market, is growing at around 10%, while North America has been growing faster, and the rest of the world substantially faster still.

BSRIA forecasts that the global BEMS market will almost double, to more than $6.8 billion by the year 2020. This impressive growth is set to occur in spite of numerous obstacles and uncertainties. This is partly because the factors driving this growth differ from one region to another.

In Western Europe, gas prices almost doubled between 2005 and 2013, while at the same time major economies like Germany became increasingly dependent on import of gas from politically sensitive countries like Russia and the Gulf states, raising the spectre of uncertain supplies.

While the rise in electricity prices has been less dramatic, Germany faces the huge task of fulfilling its commitment to

henry dec2shut down all nuclear power generation by 2022, and the UK faces similar challenges as its ageing, coal-consuming and CO2-spewing power stations reach the ends of their lives, with the ghost of Christmas back-outs rising like a Dickensian spectre to haunt the business and political worlds.

This, and increasingly aggressive environmental targets, at national and EU level, mean that even a Europe which has been in or near recession for more than five years continues to invest in energy efficiency. At the same time, there are signs that organisations at all levels are beginning to understand the full potential of BEMS to save money while meeting obligations and improving the brand.

In North America, the pressure of energy prices has been less relentless, especially since fracking of shale gas has got underway. The movement towards environmental regulation has also been patchier – often varying at local and state level, and has faced more opposition. At the same time, the proportion of energy consumed by office buildings has been rising inexorably at a time when energy used in such areas as transport, industry and homes has been either stable or falling, placing office buildings firmly in the sights of those wishing to make savings. North America also benefits from the plethora of firms developing innovative energy management solutions in both the USA and Canada.

In the rest of the world the picture is extremely varied, from developed countries like Japan and Australia with widespread adoption of BEMS, to major emerging economies like China, where energy has hitherto been seen as rather less of a problem but where the pollution associated with fossil fuels is becoming more pressing.

This growth presents huge business opportunities but also as many gauntlets thrown down. The mainstream building automation suppliers are all active, unsurprisingly, given that the two are so genetically interlinked that building automation was originally widely referred to as building energy management. They can offer the benefit of relatively easy integration of energy management into the building’s wider functioning.

Against this, as virtually every device, appliance and component of a building becomes capable of generating and communicating data, the advent of big building data has opened huge opportunities both to enterprise data and IT suppliers and to an army of smaller newer suppliers of advanced analytics, allowing building managers to predict and pre-empt problems that degrade a building’s energy performance.

Some of these new entrants will fall by the wayside, especially given the level of overlap between many of the offerings, others will be ripe for take-over, but a few are likely to emerge as major disruptive players. In our report we identify the leaders and challengers, along with the niche players and some of the most likely acquisitions. As always, there is an implicit conflict between the move towards integration on the one hand and the desire for innovation on the other, and we look at some of the standards that are emerging to address this.

The prize is most likely to go to companies that can combine innovation in new technologies, and understanding of how a building’s occupants interact with the building, with a deep-seated understanding of how buildings function. This report should help to shine a light on who will be left holding a torch for others to follow if and when the lights really do threaten to go out.

This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Smart Building Conference – The Human Factor

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

On 7th October I attended the SmartBuilding Conference in central London, in the course of which we were treated to the views of a range of industry-experts including BSRIA’s own Jeremy Towler.  Like all worthwhile conferences, it presented a mixture of familiar messages being elaborated and reinforced – such as the all too frequent gap between the vision and the delivery of smart buildings, and the vital role of retrofit in a world where 80% of the buildings we will be using in 2050 have already been built, and some less familiar insights. These are some of the main points that I took away.

While we often talk, rather platitudinously about, buildings, or businesses being “all about people”, we spend less time thinking about what this really means in practice.  An often overlooked fact is that people’s statements of what they want is often a poor guide to how they will actually take to new technology. This is not just because we often lack the understanding and vision of what is possible (as in the famous Henry Ford quote that “What people ‘really wanted’ was not cars, but faster horses.”), but also because (as every psychologist knows) we are much less rational and consistent in our judgements than we like to think we are. This places a premium on observing how people actually use buildings and adapting them and, even more so, future buildings.

Effectively observing and responding to the way people use buildings has wider implications.  One speaker suggested that the general move from a product-based to a serviced-based approach (as exemplified by cloud based solutions and the increasing tendency to lease equipment and facilities) is likely to penetrate from the “easy hits” to the more general areas of building services and smart technology, even potentially to the concept of a “building as a service”, where those who design and construct and configure the building are also those responsible for running it, helping to combat a problem where a building is designed supposedly to be smart, by people who then walk away having handed it to a completely different group, resulting in a loss of understanding, continuity and accountability.

Having buildings that genuinely learn and evolve in response to users’ changing needs over time calls for flexible and adaptable approach to design and construction so that they can cope better with changing needs. One way of achieving this is by using more modular construction techniques, which can at the same time reduce construction costs. Project Frog which has been responsible for a number of modular buildings in the USA was cited as an example of this.

Where an end-to-end approach is lacking, smart technology is too often a late add-on which means that it is not fundamentally designed into the building, and that those implementing it lack a connection with the original concept.

With IT increasingly at the heart of buildings, IT departments need to be involved from the early stages, and if engaged correctly they can help identify and address problems, including some of the most potentially serious challenges such as building cyber security.  Too many organisations still see IT and Facilities Management as separate disciplines to be kept siloed.  This can lead to failures of communication, and worst case, to actual conflicts.
There was also a lot of discussion of the role of more specific types of technology. For example, wireless technology is recognised as a useful backup, and for fixes to problems where the building can’t easily be rewired (historic buildings come to mind here) or where a ‘cheap and cheerful’ solution is sought, but is unlikely to become reliable enough for critical services, owing to fundamental problems of potential interference and obstructions which can arise unpredictably. This reminds us that “You cannae change the laws of physics” is a maxim that extends well beyond grainy back-editions of Star Trek.

There was much discussion of the way in which companies that have not traditionally been thought of as buildings- related, even in the most technological way. BSRIA research has already identified how IT companies like IBM and Microsoft are starting to make an impact in the world of smart buildings, now joined by Google and Apple, especially at the residential end of the market. This raises intriguing questions. On the one hand these companies bring not only deep knowledge of key areas of IT, especially in processing ‘big data’, on the other they  also have massive financial resources and proven commercial acumen, which could help to spearhead and open up  new markets.

However there are also fears that the delivery model typically deployed by companies like Google and Apple may not lend themselves to the more complex demands of building management. Simply buying a “smart home kit” from an Apple or DIY store is unlikely in itself to give you the hoped-for results in terms of improved energy efficiency, comfort and security. This could even lead to a consumer backlash that sets back the technology. There was a consensus that consumers will need experts who can provide advice and also ensure that systems are properly implemented. This in turn requires a range of skills broader than the “traditional” electrician, plumber, heating engineer or security engineer.

We were reminded that major disruptive technologies are normally led by new entrants into the field, posing a challenge to the major established players. Indeed it seems quite likely to me that the companies that are leading the field in 20 years’ time could well be ones that most of us haven’t heard of, or which don’t yet exist.

I left the conference slightly haunted by one further thought: We heard a lot about how buildings must learn and adapt to their users’ actual needs and behaviour. This led me to wonder how far this change, if it emerges and it surely will, will in turn change actual human behaviour.

Since our ancestors emerged from the forests and savannah thousands of years ago, humans have gradually been losing the need to be acutely aware of the physical world around them. First there was the loss of contact with the wilderness, and nature “red in tooth and claw”. Then the industrial revolution alienated us increasingly from the basic processes of producing food and the physical manipulation of nature.

Smart conferenceThe electronic revolutions mean that we need to understand less and less about the way that for example, our cars or heating systems or computers operate and indeed we meddle with them at our peril.

If even buildings and cities come to observe, know and “understand” us and anticipate our actions, will humans then become, physically at least, almost wholly reliant on outside intelligence, and end up, in effect almost leading an artificially controlled ‘virtual’ existence, and what role will human intelligence then play as opposed to artificial intelligence?

This might seem far-fetched, but big changes often tend to occur much faster than anticipated, and often, far from being incremental, can depend on sudden tipping points. There are also of course  formidable barriers, not least the public reaction to the prodigious level of data sharing that would be needed to make all of this even remotely possible.

Nonetheless, I for one find it intriguing that the development of the smart building could just be part of the gradual emergence of a new “breed” of human, in terms of what they think and more importantly how they interact with the world.  Could we be seeing the emergence of a kind of “virtual man” where the boundaries between the human and the buildings, vehicles and cities we use and inhabit are hopelessly blurred?

Building services now look more exciting today and indeed  look closer to science fiction than could have been imagined when BSRIA started out 59 years ago.

Think in £s not kWhs and Start Reaping the Rewards

Steve Browning is Marketing Manager of Trend Controls, a BSRIA member company

Steve Browning is Marketing Manager of Trend Controls, a BSRIA member company

Often considered an unwelcome expense, the truth is that investing in energy saving initiatives offers significant financial benefits, as well as enhancing an organisation’s environmental credentials. I’m Steve Browning, marketing manager of Trend Control Systems and in this blog I will explain how a Building Energy Management System (BEMS) can increase the bottom line.

Although better energy management and the need to reduce carbon emissions are both moving to the forefront of the corporate agenda, they are doing so far too slowly. Rising prices, combined with the increasing scarcity of resources and a growing raft of environmental legislation, means that addressing the issue of how energy is used is no longer just an option, but something that requires serious attention by all businesses.

To put the issue into perspective, the long-term framework outlined by the Department of Energy and Climate Change (DECC) sets out plans for achieving the reductions stated in the Climate Change Act 2008. When compared to 1990 levels, this equates to a reduction of at least 34 per cent by 2020 and at least 80 per cent by 2050. As they are responsible for 17 per cent of the UK’s carbon emissions, the nation’s 1.8 million non-domestic buildings are at the very heart of meeting this challenge.

The government is also ramping up the pressure to comply. In addition to the CRC Energy Efficiency Scheme, the Climate Change Levy (CCL), Air Conditioning Assessments, Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs), earlier this year the Energy Savings Opportunity Scheme (ESOS) was introduced to address the requirements laid out in Article 8 of the European Union (EU) Energy Efficiency Directive.

It means that ‘large enterprises’ employing 250 or more staff, or that have an annual turnover of in excess of around £42m and an annual balance sheet total of around £36m, must complete regular energy audits. The first must be undertaken by 5th December 2015, and then at least every four years.

The government hopes that ESOS will drive the take-up of energy efficiency measures amongst businesses, enhancing their competitiveness and contributing to the wider growth agenda. Furthermore, for organisations wishing to comply with increasingly popular international standards such as ISO 50001, a certified energy management system (EnMS) must be in place.

It is therefore a constant source of bemusement and irritation to me that some organisations aren’t making the obvious correlation between investing in technology that can reduce energy use and saving money. By failing to ensure that energy is being used as well as it could be they are, quite literally, paying the price.

One reason for this could be that for energy bills are often low compared to items such as wages, research and development, and property rental. However, companies must consider other issues such as brand reputation, employee expectations and competitive positioning, while customers expect them to play an active role in reducing the carbon footprint of their operations and products.

Even more frustrating is that in many circumstances it doesn’t even involve a vast capital outlay on new technology – for example, by simply maximising the potential of an existing BEMS energy savings of 10-20 per cent are easily achievable. This could equate to a 0.1-0.4 per cent saving on a company’s total cost base, instantly increasing profitability.

When a BEMS is first commissioned it is configured around an existing building layout and occupancy patterns. These can change over time and incorrectly configured time clocks and setpoints, new layouts, and repartitioning can all lead to poor control and energy wastage.

Failure to maintain a BEMS on an ongoing basis will result in degradation of the building’s energy performance. In order to rectify this, it is advisable to undertake an audit that ascertains what can be achieved and identify any energy saving opportunities. While items such as boilers, chillers, air conditioning, and pumps can be checked to make sure they are working correctly, any maintenance issues to do with the BEMS itself or the building services equipment use can also be addressed.

BEMS providers will be able to offer expert advice on how to enhance the operation of plant by installing items such as variable speed drives. The investment can pay for itself in a matter of months – for instance a centrifugal pump or fan running at 80 per cent speed consumes only half of the energy compared to one running at full speed.

It is critical to achieve stakeholder buy-in for any business enhancement programme and by using a standard Internet browser, software based packages are available that act as a window to a BEMS. It is also possible to access utility meter readings from a BEMS and present a continually updated record of a building’s energy consumption and carbon emissions – showing employees and visitors whether they are on, below or above performance targets.

Hopefully, I have demonstrated that reducing carbon emissions and lowering energy expenditure are closely linked. The savings that can be made through the use of a correctly specified and maintained BEMS are considerable and will help achieve compliance with environmental legislation. My advice is to take action before it is no longer a choice!Trend_RGB SMALL

For further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report –Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Smartening up the City

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

There are some leaps in technology that seize the mind and imprint themselves indelibly on the memory. There can hardly be anyone over the age of 50 who doesn’t recall their grainy view of the first man on the Moon, and people who are quite a bit younger will remember when, say, paying a bill or booking a holiday online was still a novel experience.

There are other changes which, while they are already having far more impact on our lives than the Moon landings, seem to have crept up on us, almost by stealth. The advent of the Smart City looks very much like being one of the latter.

The Seminar Smart Cities and the Internet of Things, which BSRIA attended on 16th July, helped to flesh out some of these. One key factor is of course the sheer all-encompassing variety and complexity and scale of a modern city, as reflected in the technology required to support it. This was underlined by the presentations on the range of “smart” cities, from major building consultants, to companies working closely with utilities, to data analytics companies.

This points to a pluralistic approach where different companies collaborate, each contributing their own particular skills, rather than one where a mega-corporation tries to orchestrate everything.  As one speaker pointed out, the smart car alone is likely to involve motor manufacturers, battery and power specialists, grid utilities, digital IT specialists, and the advertising and public relations industry (interestingly, two of the three first people I spoke to represented public relations companies). And that is before one gets on to the subject of the role of city and national authorities.

While the seminar focussed, understandably, on the elements that comprise the “Internet of Things”, making up ‘the nuts and bolts’ of the smart city, it also convinced me that we need to pay more attention to the wider social, political and economic context.

What makes a city smart? Given the combination of complexity and subjectivity, that is always going to be a hard question to answer. Nonetheless a group of academic institutions did rank 75 smart cities across Europe based on the “smartness” of their approach to the economy, mobility, the environment, people, living and governance.

When I measured the ranking of smart cities in each country against that country’s average income, I was struck, but not that surprised, that there was an almost linear correlation between a country’s wealth, and the ranking of its ‘smartest’ city. Thus at one extreme Luxembourg, easily the richest country in Europe, and second richest in the world, was also judged to have the smartest city. Lowest ranked was Bulgaria, which also had the lowest per capita income of all the countries on the list. Most other countries were in a ‘logical’ position in between.

Smartening up the city

One can of course argue whether smart cities are mainly a cause or a consequence of a country’s wealth. Up until now I suspect it is mainly a matter of richer countries being able to afford more advanced technology, not least because the relative economic pecking order has not changed that much in the past 25 years, i.e.. since before the smart city era really got underway, indeed if anything the countries on the bottom right of our chart have been catching up economically, which could be why countries like Romania, Slovakia and Slovenia are doing better in the smart city stakes than their income might suggest.

Luxembourg is of course unusual in one other significant respect. In terms of size, and population, it is about the size of a city, and is politically and economically very much focussed on its eponymous capital city. This raises a question sometimes posed in other contexts: Is the “city state” making a comeback, and could this have a bearing on the development of the smart city? In this respect it surely speaks volumes that Singapore, probably the closest entity to a city state in the modern world is not only highly productive economically but frequently cited in the history of the smart city, going back to the days when it pioneered road pricing more than a generation ago, and one of the cities mentioned in this seminar.

If you are laying down the guidelines for a smart city then there are clearly advantages in having an authority with the resources and powers of a government, combined with the local knowledge and accessibility of a city.  But given that splitting up the world into hundreds if not thousands of new ‘city states’ does not look like a viable option, what can be done to create a framework in which smart cities can flourish in a way that is responsive to their citizens’ needs?

Even in larger countries, the Mayors of major cities are often heavyweight national figures, enjoying wide ranging  powers. This applies to cities like New York, Berlin, Paris and, more recently London. One of the most interesting developments in Britain is the growing recognition that while London is already in effect a global economic power, other cities have been struggling to keep up. While this problem long pre-dates the smart city, it speaks volumes that, with a general election due next year, all of the major parties are now committing to giving more powers to major cities outside of the capital, possibly with more directly elected mayors.

Given the nature of democratic politics there is still no guarantee that this will happen, especially given governments’ traditional reluctance to hand over power, but with Scotland likely to enjoy greater autonomy even if it votes to remain in the UK, the pressure to devolve more power to cities and regions in the rest of the UK will be that much greater.

Even this would not of itself promote smart cities, but it would mean that city mayors or leaders seeking to promote and coordinate smart city developments, and companies and interest groups looking for partners, would have much more powerful instruments within their grasp.

BSRIA’s Worldwide Market Intelligence team produces an annual report into Smart Technologies. To find out more go to our website

A forward thinking attitude to energy management

Chris Monson, Strategic Marketing Manager of Trend

Chris Monson, Strategic Marketing Manager of Trend

Given that in parts of the world like Europe and North America some 40% of all energy used is consumed by buildings, both companies and wider society are increasingly focussing on the energy performance of their buildings, and how to improve it.

Building Energy Management Systems (or BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance. 

I’m Chris Monson, strategic marketing manager at Trend Control Systems, and I’d like to welcome you to the latest in a series of blogs where I, along with my colleagues, examine the issues affecting the building controls industry and the use of Building Energy Management Systems (BEMS).

It strikes me as somewhat bizarre that in an age where owners, managers and occupiers of commercial premises are under tremendous pressure to operate as energy efficiently as possible, so few developers recognise the long-term value of installing a fully featured BEMS at the construction stage. Such is the value and relevance of this technology, that to my mind it should be considered as important as other elements of the building services infrastructure that are designed in as a matter of course.

BEMS facilitate greater energy efficiency and the cost savings and the environmental benefits that can be experienced as a result of investment in this technology are considerable. A fully integrated solution can have up to 84 per cent of a building’s energy consuming devices directly under its control, offering greater visibility of energy use by monitoring services such as heating, ventilation, air conditioning (HVAC) and lighting.

According to the Carbon Trust 25 per cent of a building’s energy is used in lighting, and it is estimated that around a third of the energy consumed in this way in non-domestic buildings could be saved by utilising technology that automatically turns off lights when space is unoccupied. In addition, air conditioning can increase a building’s energy consumption and associated carbon emissions by up to 100 per cent, making it imperative that its use is tightly controlled.

So why isn’t the design and installation of a BEMS happening in the initial stages of a construction project? I’m afraid that the answer comes down to a combination of cost and lack of foresight. However, to fully understand why these two factors are proving so prohibitive to BEMS implementation, we need to understand a little more about the mind-set of the developer.

Developers tend to fall into two broad groups – there are those that configure buildings for others to inhabit and others who design and build premises for their own use.

When it comes to the former, the main driver is to save costs at the construction phase and little thought is given to the building’s future occupants and how they use the building. As there are no regulations stating that a BEMS must be installed, there’s a strong possibility that it won’t be. However, this lack of forward thinking leads to future occupants having to cope with inadequate visibility and control of their energy usage and, therefore, higher overheads and a larger carbon footprint.

Regarding the second group, it often comes down to the failure of owners to specify the need for a BEMS at procurement stage and make sure that they have systems in place that will maximise the energy saving potential of the building. While this type of developer will also have one eye on the cost of the project, the increased capital costs of installing BEMS is easily countered by the return on investment (ROI), with an average payback of just three and a half years.

Whichever way you look at it, the fact is that on a ROI basis early stage BEMS implementation makes sound economic sense. It can form less than one per cent of the total construction expenditure and energy savings of 10-20 per cent can be achieved when compared to controlling each aspect of a building’s infrastructure separately. The benefits don’t stop there either, as if it is incorporated with smart metering, tariff changes can be used to offer a strategic approach to energy management and control, and the data produced gives clear signposts for potential improvements.

I firmly believe that in the current business climate to construct a new build property without a comprehensive BEMS borders on foolhardiness. Organisations are faced with growing pressure to demonstrate carbon reduction policies and do all they can to lower their energy use.

Despite the controversy surrounding the introduction of the CRC Energy Efficiency Scheme, it is here to stay and is likely to extend its scope to incorporate more businesses in the future. In addition, The Climate Change Levy (CCL), Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs) also affect businesses, while compliance with certification standards such as ISO 50001 put the onus on companies to demonstrate continual improvement in this area.

It should also be remembered that building occupiers are demanding greater visibility and transparency of their energy consumption and need access to data. A failure to meet this demand could mean that prospective tenants decide to go elsewhere.

Standardisation is playing an ever more prominent role and the most significant is EN 15232, which describes methods for evaluating the influence of building automation and technical building management on the energy consumption of buildings. It enables building owners and energy users to assess the present degree of efficiency of a BEMS and provides a good overview of the benefits to be expected from a control system upgrade. The use of efficiency factors means that the expected profitability of an investment can be accurately calculated and I’m pleased that a growing number of organisations are reviewing this document and implementing some of the best practice guidance it offers.

There are those who feel that regulation is the only way to make sure that BEMS are installed at the point of initial construction, although others are reluctant to see the introduction of more onerous legislation on an already pressured construction sector. At this stage I think that regulation shouldn’t be necessary if a long-term approach to energy efficiency is factored in and the benefits of a BEMS are recognised by more developers in the initial stages of a project.

Trend_RGB SMALLFor further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report – Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Buildings – Plugging the Performance Gap

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

What do The Titanic, London’s Millennium Bridge, and The Leaning Tower of Pisa have in common? One answer is that as structures they all failed to “perform” as expected. The Titanic, designed with the latest technology to achieve a success  rate of approximately 100% safe Atlantic  transits, actually achieved a disappointing 0%. The Millennium Bridge, fine and inspiring though it was, failed to take account the consequences of perfectly natural, if little understood, human behaviour – the tendency to walk in sync on a naturally moving structure – with potentially alarming consequences. It had to be radically re-engineered before reopening in 2002.

The Leaning Tower of Pisa, which I was able to climb last month, failed in the most fundamental requirement of most buildings – staying permanently upright – though in some-ways of course this very failure was the secret of its long term success and certainly the main reason that people like me still pay good money to climb it more than 800 years after it first started leaning.

When buildings fail to deliver the intended results, we talk about a “performance gap”. While this can embrace many areas including cost, safety and comfort, we tend to talk about this particularly where energy performance is concerned. This reflects the fact that energy performance is at least ostensibly a goal of most of those involved in the design, construction and management of buildings, and that as energy prices rise and concerns over the impact of greenhouse gas emissions become more acute, the sense of urgency can only increase.

Some of the reasons for this are highlighted in a useful new book “How Much Energy Does Your Building Use?” by Liz Reason (Dō Sustainability) whose launch I attended in London last week. The book highlights examples of buildings initially hailed as energy efficient which spectacularly failed to live up to their reputation. It also shows how these failings can emerge at any stage of the building process from initial planning and design through construction, commissioning and occupation and operation, and considers how these problems and shortcomings can best  be addressed and avoided.

What I want to focus on here is one central question: How do we know how our building is actually performing, let alone how it is likely to perform in future? The key here is information, which needs to be collected and then analysed, not just to show us any obvious performance issues but also point to potential problems or just unusual patterns that deserve further investigation and explanation.

This points to a central role for Building Energy Management Systems (BEMS). These are offered by a wide range of suppliers, including most of the major Building Automation providers, and present wide ranging functionality. Central to almost all of them is the collection and analysis of data, sometimes in prodigious volumes. A well implemented BEMS enables you to keep track of what your building is actually doing, irrespective of what it was intended or expected to achieve.

'Performance gaps' in buildings are nothing new...

‘Performance gaps’ in buildings are nothing new…

Another way in which the performance gap points towards BEMS is that while the value of BEMS has been widely recognised for some time in the retrofit market, especially for the huge mass of buildings constructed in 1960 – 1990, there has sometimes been a tendency to assume that more recent buildings, being generally built to much higher standards, can, to a degree, “look after themselves”. If a building really is “zero energy” then what is there to manage, at least from an energy point of view?

However, if there are basic failings in the design itself, the way it has been implemented or commissioned, or the way the building is operated in relation to its actual usage, then the performance gap can loom up large and un-ecological as a fire-breathing dragon. Sometimes the failings can be obvious: a stiflingly uncomfortable office can jump up and hit you as much as a wildly wobbling bridge. But in other instances, energy wastage is less obvious. Real performance issues emerge only when the actual data is collected and analysed over time.

This month BSRIA publishes the latest update of the study “BEMS Market 2014 Q2 :Developments in Europe and the USA”, a study which, with its regular quarterly updates, helps you to keep up to speed with the newest developments in this exciting and important area.

Design Fine Tuning?

 

Julia Evans, BSRIA Chief Executive

Julia Evans, BSRIA Chief Executive

BSRIA has been involved in many recent projects including an independent assessment of the realised performance of low energy / environmentally conscious buildings.  This includes projects associated with the Technology Strategy Board’s Building Performance Evaluation (BPE) programme.

The emerging results for more than 50 non-domestic buildings have now been analysed by BSRIA to look at what works well, and when things don’t, why this is the case.  It’s always difficult to generalise based on such a diverse building stock, ownership profile, procurement route, supply chain capabilities, and operational approach, but its clear that in many of the buildings there is a significant performance gap between design intent, and realised performance.  Analysis of such data is always a challenge.  How does one attribute, for instance, any shortfall in performance between the specification, design, construction, commissioning process, and to operational issues such as sub-optimal energy management and / or changes in operating regime such as an extension in occupancy hours.

However one lesson inferred from the analysis is that with some low carbon (and / or energy) buildings one of the unintended consequences is that sometimes the building has been finely “tuned” to minimise carbon (and / or energy), and capital costs at the expense of the building’s resilience in the face of, say, changing patterns of use or internal gains.  Put simply, if a building has been engineered to reduce energy and or carbon for a particular set of operating conditions, and one way of achieving this is to simply size ventilation, and air conditioning plant in line with those conditions, what happens if say internal gains increase as a result of higher occupancy loading?  In practice it is found that some environmental designs lack the flexibility to cope with changes in business use because of limitations built into their design.  This happens with more conventional buildings, with the difference for environmental buildings being more pronounced because the design in many cases is more finely “tuned” as we move ever closer to “near zero”, or “very low” energy / carbon buildings.

BSRIA’s experience identifies many of the good practices required to ensure environmental buildings work well, and also the impact of poor practice.  Overly sensitive design is one cause of poor performance in practice.  So the question is why do some clients and their design team include a sensitivity analysis to design services and size plant so as to ensure resilience, whereas others adopt an approach best characterised by “lowest capital, highest environmental ranking, never mind about actual performance in use”?  The likely answers are complex.  Those found by others like Latham and Egan come to mind for some instances: informed clients recruit supply chains who know their business, and both understand implications of design decisions; post-occupancy-evaluationanother is the chasm which can often occur between those who specify, procure, and lease buildings, and those who occupy and manage them.  Perhaps a third is that once a building has been occupied, too seldom is thought given to how the building will actually work in the face of changes in occupant requirements.

The question for BSRIA is how we can provide a steer and guidance to our members and the industry as to how best to ensure that we build the next generation of environmentally sensitive buildings to be even more resilient in the face of likely changes those buildings will face over their lifetime.  A building which has a very low carbon and / or energy design use, but which fails to provide a productive environment in the face of foreseeable changes in operating conditions can’t really be described as “sustainable”.

This blog was written by BSRIA’s Chief Executive, Julia Evans. For more information about BPE you can visit our website or visit the TSB’s BPE pages where you can look at case studies and methods of BPE (you may need to register to access these). 

Building Controls: Throwing a BRIC in the Works

Henry BlogThe BRIC countries; Brazil, Russia, India and China feature prominently in the news on an almost daily basis, for all sorts of reasons. While there have been concerns over a slowdown in growth, China, India and Brazil have all continued to grow through the recession at substantially faster rates than most of the developed world, and whilst the somewhat reduced growth rates may cause alarm in China and India, they would be cause for wild celebration in, say, much of Europe.

China, Brazil, Russia  and India all now rank in the World’s top 10 economies, and China is already second only to the USA, and is poised  to overtake it sometime in the next few years.

This economic development has naturally been associated with a lot of building development, including demand for such systems as HVAC and Building Automation. Nonetheless, in the BRICS countries the Building Controls markets have tended to lag behind their economic development.

Hence, according to BSRIA research, China’s Building Automating market was the world’s 5th largest in 2012, while Russia ranked 11th, India 16th and Brazil 18th.

What is more, the same research shows that the Chinese, Indian and Brazilian markets were dominated by the “Big 4” global suppliers: Siemens, Johnson Controls, Honeywell and Schneider Electric, even though the individual company shares varied reflecting local market conditions.

One thing that the history of the past 150 years has taught us is that as technologies mature and economies develop, industries tend to migrate to areas which offer the combination of lower costs and growing markets which China, India and Brazil are all in a position to do. This has been seen with the massive movement of manufacturing industry to China and of IT related industries and services to India. This in turn has created some new locally owned corporations with major industrial and financial clout, in a position to compete and invest on a global basis.

The latest update to BSRIA’s global study Challenges and Opportunities in the BACS Market , looks at a number of key trends, including the potential for new challengers to emerge in China, India and Brazil.

Unsurprisingly, the process appears to be most advanced in China. Spurred on by the wave of new construction, suppliers such as Techcon, SUPCON, Beston and RUNPAQ have started to make a real impact covering most of the main vertical markets, and including some high profile projects.

In India, where the overall market is significantly smaller, only Larsen and Toubrou, a major Indian-owned global corporation, stands out. There are however a host of Indian companies providing implementation and integration services.

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

In Brazil a major domestic supplier has yet to emerge, though as in India there are a range of local companies offering related services.

In Russia, local Champions such as Regin and Polar Bear have gained a significant national market share, but have yet to have much impact elsewhere.

Past experience in other industries suggest that these countries may well provide favourable conditions for local champions to emerge and that, as their national BACS markets grow and mature, so this could even provide a springboard to offer products and services on a regional or even a global basis. This is definitely an area that everyone with an interest in Building automation, be it as a supplier, customer or service provider, should continue to watch going forward.

Other subjects that we focus on in the latest update include Technical Infrastructure Support Providers, developments in cybersecurity for buildings, and new alliances and mergers.

To find out more about Challenges and Opportunities in the BACS Market please contact Steve Turner – Steve.Turner@bsria.co.uk

UK Budget response from Andrew Eastwell, BSRIA Chief Executive

Andrew Eastwell, BSRIA CEO

Andrew Eastwell, BSRIA CEO

In a budget that is so close to an election there was never going to be pain inflicted that would upset the electorate and so measures required to compel anyone to spend money on energy saving was not going to feature in the Chancellor’s speech.   On the contrary, with Labour repeating their pledge to freeze energy prices the likelihood was that taxes on energy would be reduced – and with it the inevitable consequence that payback times on energy saving measures would become longer.

This is indeed what happened where the Chancellor quoted a figure for reduction of national energy costs of £7bn through a £1bn “special protection” aimed mainly at manufacturers with high energy intensity operations, steel mills, paper producers and chemical manufacturers. This package is intended to “protect… from the rising costs of the Renewable Obligation and Feed-in-Tariffs”.

A freezing of the Carbon Price Floor does also have a small benefit to householders – estimated at £15 per year.

One surprise however was a concession given to CHP which now has an exemption from the Carbon Price Floor for electricity generated.  It is aimed mainly at manufacturers using this technology but presumably will benefit other district schemes as well.

The Chancellor indicated that there would not be a reduction in renewable energy investment but since so much of that is driven by private investor money it remains to be seen how they will react to the plain intent to begin to offset the differential between UK energy prices and those in the USA.  Mr Osborne noted industrial energy costs were half the price in the USA compared to UK.

Elsewhere the statements regarding the efforts to increase house building were largely a restatement of previous announcements such as the proposed new garden city at Ebbsfleet and additional housing in Barking and Brent Cross.  What was intriguing was a proposal to give individuals a new “Right to Build” – backed with £150m of finance. The details of that will be interesting indeed as previous ministers with construction responsibilities have been keen to increase the volume of self-build homes.

Overall the budget did have a feel of being “Northern friendly” with reference to earlier consideration of HS2 construction beyond  its current plan, extension of enterprise zone tax breaks for a further three years and £270m to guarantee funding for the Mersey Gateway bridge.

Certainly the construction sector will welcome efforts to move the centre of effort further out from the London basin so that resources locked up in people, land and facilities can be fully exploited without the additional costs of working in the hothouse of the South but a budget designed for green development?  I don’t think so, that will have to wait until unpalatable policies can be applied with four years to go before a vote!

Who Will Rule the Smart New World?

While Analysts’ predictions of the next big developments in Technology have become as much a January tradition as are hangovers and the task of hoovering pine needles from the carpet, it is often even more illuminating to look at what is actually happening, but which may be “hidden in plain view”.

Henry latest

While BSRIA has been reporting on and working with developments in building technology for decades, two recent trends have become clear:

  • The pace of development is accelerating, as buildings move increasingly into the IT mainstream, with elements such as software becoming as important as the more ‘traditional’ electronic and mechanical aspects.
  • Other areas of smart technology are not only developing apace, but are converging, in ways that are both predictable and perhaps more surprising.

Already smart technology is ubiquitous and affordable enough to influence every area of life from home and leisure to commercial premises to infrastructure and the most basic processes used to run cities and the governments of whole countries.

Whether it is using a smart phone to adjust your home heating or to pay your local taxes, or a smart meter to indicate the cheapest time to run a load through a smart washing machine, or smart glass that lightens or darkens in response to ‘instructions’ from a building, or smart cars communicating with traffic signals, we are seeing technologies that we have always thought of as independent interact, as the Internet of Things steadily expands to becomes the Internet of Everything.

This interaction is not only convenient; it also means that the same goals can be pursued simultaneously using different smart systems. To take one example, if we want to reduce greenhouse gases, we can use smarter and more energy efficient devices and appliances, we can manage the energy consumption of our home or office through building controls (or even by using smarter building materials), or wider society can invest in smarter grids and smarter sources of energy production. The balance of the mix that brings the best result can change depending on the situation, so they need to be interconnected.

All of this opens up huge potential opportunities for companies to emerge as leaders in the smart new world. Some of the leading automation companies are already well established here. But other sometimes surprising challengers are emerging. As information and analysis becomes more central to the smart world, including the smart built world, so software and IT services companies are seeing and seizing opportunities, and other companies are also branching out.

While the “smart homes” market may initially have been slower to take off than some expected, it is telling that Honda entered the market in 2013, and Google followed, with its acquisition of  Nest Laboratories in January 2014.

Of course growth by acquisition is not in itself enough. The much more challenging task is integrating diverse offerings into a single seamless and coordinated whole. Here the advantage will go to those companies who can develop solutions that naturally fit together, and who also understand how to develop and market them in a coordinated and holistic way.

Equally, the smart new world will rest not just on technological ingenuity and innovation. Equally important will be the understanding of the world of organisations – from private companies to governments, and on the behaviour of individuals. Each of these will interact and influence the other, often in unintended and unpredictable ways. The larger the scale of the system, the more complex and unpredictable it becomes. (It is telling that it is huge projects which interact both with governments and with a myriad of individuals that are especially liable to go wrong, as witness the debacle over the roll-out of the computerised elements of the new American Health Care system – ‘Obamacare’).

The companies that do best in this environment will need to offer the soft skills, including the social, the psychological and the political, in order to prevail.

BSRIA has just published a major new Market Study Smart Evolution 2014: Convergence of Smart Technologies: Towards The Internet of Everything which considers these questions and much more, and identifies the companies who are currently best placed, and those who are set to emerge as challengers.

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

It is a new world that sometimes appears as through a looking glass. As Lewis Carroll didn’t quite write:

The time has come to talk about the Internet of Things

Of BEMS and BACS and web attacks

On automated Buildings

And power from bricks and glass that thinks

And should smart cars have wings?…

To find out more about the study  Smart Evolution 2014: Convergence of Smart Technologies: Towards The Internet of Everything   or to order it , please contact:
Steve Turner Steve.turner@bsria.co.uk
T +44 (0)1344 465610

%d bloggers like this: