Why the industry needs to be uncomfortable with current ways of working

This blog was written by Richard Ogden, Chairman of Buildoffsite

This blog was written by Richard Ogden, Chairman of BuildOffsite

I am delighted to have this opportunity to contribute a blog – particularly at a time when a hugely influential industry like BSRIA is exploring the need for the industry to change its processes.

I have worked in the construction industry for more than 40 years – as client, contractor and property manager. In all that time there has been an almost constant call from voices drawn from right across the industry, from Government and from the media for the industry at large to change its processes and ways of working. To do things differently – to work collaboratively – to partner – to adopt innovative processes – to invest in and adopt new technologies and project management practices and so on. The reason for this clamour is always the same – the need to improve performance and productivity, the need to be less wasteful and more sustainable, to improve the image of the industry, to deliver better value assets, and to make the industry a better and safer place in which to work.

All good and well intentioned stuff but it does seem to be a peculiar feature of the construction industry. I don’t for example hear anything similar coming out of the automotive or consumer products sectors. Industries where investing in change/innovation is constantly being driven by the unforgiving hard edge of competition. OK- I hear (but do not accept) the mantra that construction is in some way different from other industries and frankly I recognise that there is still a whole lot of life left in this view of the industry. I am certainly not going to beat myself up in challenging this position when there is so much more constructive work to be done.

The case for change within construction often comes wrapped up within the covers of a report from an industry or Government appointed committee together with recommendations for action plus of course a set of targets. Inevitably before long yet another report will come delivered by yet another committee having chewed over an almost identical bone which will have come up with broadly similar proposals and another set of targets. All seamless and without any sense of continuity of message or indeed continuity of action.

Don’t get me wrong I am not against this approach as a mechanism to stimulate discussion and debate and indeed I was a member of the Movement for Innovation. However, it’s just that I don’t see much in the way of connection between broad based calls for change and the practical decision taking that goes on day in day out within individual construction businesses looking to win work and improve profitability and competitiveness. Close coupled to this is the reality that the status quo is for many a very comfortable place in which to operate. Unless there is a pressing need for a company to do things differently the chances are that sticking to the knitting will be an attractive option. Why break step if your competitors are operating in much the same way and if business is good.

In my experience it is only when individuals decide that they are uncomfortable with or no longer willing to simply go along with the way things are that meaningful change is likely to happen. If enough individual businesses decide to do things differently then there is the prospect that a sizeable part of the industry will change how it works – not because a report has made recommendations but because they are convinced of the need. Encouraging more decision takers within the industry to be uncomfortable and then encouraging the uncomfortable to take decisive action is how substantive change can happen.

Sometimes change becomes necessary if a business is to survive and prosper. When I worked for a client the cost of construction delivered traditionally became more and more expensive until the point was reached where the business could no longer afford to invest in new construction projects because the cost was not justified by the revenue that the investment would deliver. Think about that for a minute we were a serial client wanting to invest in new construction to help grow our business and to create jobs but the harsh reality was that we had been priced out of the UK market. I suspect that it will not be long before this phenomenon reappears in some sectors of the UK market.

Our decision was quick in coming – if the traditional industry was not able or willing to provide us with the built assets at a price we could afford and to deliver within the timescale in which we needed the assets then we would change our construction model and our supply chains and take on board the challenge of stripping out a significant amount of the waste that we knew to exist within the traditional industry in order to deliver the projects at a price that worked for us and within a timeframe that was acceptable to us. Working in close collaboration with our project partners we demonstrated that it was possible to simplify processes, strip out waste, adopt standardisation as much as possible and most importantly take that essential step of maximising the use of factory made offsite solutions to minimise the need for construction work to be carried out on site. Constructing on site from a set of commodity materials and products is inevitably going to be uncertain and potentially challenging involving low levels of site based productivity, indifferent quality and uncertainty of build programme.

The results we achieved were powerfully impressive in terms of the cash savings made, the additional value we gained and the much faster build times that we achieved. All this – including protecting the margins of our suppliers – was achieved by minimising all forms of waste. That was just fine as far as I was concerned because as a client given the choice I would not want to pay for waste and inefficient processes. I would want to pay for right first time quality, build programmes that are realistic and cost in use that is meaningful.

The learning acquired as a result of this forced change stood my company in good stead and became our standard construction practice. Our approach was also taken up by many other leading clients.

We were not talking about rocket science. The steps we followed involved a relatively simple approach including: giving clear leadership; being sure about what we wanted to achieve; listening to our suppliers and encouraging their advice; being collectively prepared to rethink every aspect of construction – absolutely no sacred cows; not being prepared to accept the message that this or that couldn’t be done – it usually can; be open minded; recognising that there will always be scope to do things even better next time around.

This approach and in particular a recognition that other than for site specific elements it is almost always better to assemble building and civil engineering structures on site is fundamental to the work programme that Buildoffsite has been advocating for more than 10 years. Together with our Membership we will continue to make the case for the increased use of offsite solutions based on sharing information on the innovative projects that our Members have delivered, working together to develop new innovative solutions, promoting new technologies and encouraging the take up of information modelling and the application of lean principles to identify opportunities for introducing more efficient processes.

I am delighted that our Membership continues to grow bringing together leading clients, suppliers, investors, skills and research organisations and so on. The common denominator is that our Membership and those organisations we work with to partner knowledge transfer are all committed to do things better – at a practical level to make change happen and to support continuous improvement.

Front cover imageThe case for offsite solutions will be proven to the satisfaction of clients and suppliers by the tangible project benefits delivered by projects that incorporate offsite methods. This applies just as much to the delivery of building services as it does to all other construction elements. However, there will be no free lunch. An approach based on the use of offsite solutions will need to deserve to be commercially successful. If offsite solutions fail to be competitive with traditional methods on whatever basis the customer deems appropriate then they will not be adopted.  That is precisely how markets should operate. However, I hope that in comparing the performance of offsite solutions with traditional solutions the assessment will include all relevant factors that impact on value including time, cost, quality and cost in use. For example it can still be the case that the precise cost of a potential offsite solution will be compared with the theoretical and highly uncertain predicted cost of traditional construction. As construction inflation increases this simplistic method of assessing project value is likely to become increasingly unreliable. We are working closely with the industry’s professional institutions to improve the understanding of offsite construction and to support the development of new skills.

I have no doubt that the case for offsite solutions will continue to grow and the market will expand rapidly across all sectors. I also have no doubt that we have only just started to scratch the surface in terms of our understanding of what can be achieved in reducing cost, improving client value and improving the performance of the industry. Remaining open minded and being committed to challenge the status quo will continue to drive innovation and to effect the changes that we are called on to support.

If I can pass on one final suggestion it would be to encourage everyone in the industry to be uncomfortable with current ways of working. If we could achieve this we would be well positioned to move on to effecting change.

If anyone wants to learn more about Buildoffsite check out our web site www.buildoffsite.com

Are they ready yet? – Delivering the Level 2 BIM tools

TSB SBRI Competition – A digital tool for building information modelling

TSB SBRI Competition – A digital tool for building information modelling

As you will no doubt have seen the UK Government has refined its BIM Level 2 requirements over past months and now describes them in terms of compliance with a number of documents and tools (see earlier blog article on 7 pillars).  Most of these are already available and the last ones are currently being prepared.  In September 2014 RIBA Enterprises was awarded the contract by Innovate UK (formerly the Technology Strategy Board) to develop a digital plan of work (dPoW), an accompanying classification structure and a digital interface through which to access it all. The first phase is due for delivery in April this year, with further releases planned for later in the year.  The work is being carried out by NBS, a company wholely owned by RIBA Enterprises and which is best known for producing the NBS specification writing product.

This work is very important and the outcome has the potential to be of benefit to parties throughout the construction and operation markets.  The dPoW will provide assistance for clients in preparing their employer’s information requirements (EIR), and also for the supply chain in preparing BIM execution plans (BEP), their response to the EIRs.  It will also describe the data and information manufacturers need to include with their products to meet BIM requirements.

The classification system being provided needs to enable information and data to be labelled in a consistent manner, making it readily available for reuse. It must be as suitable for infrastructure as it is for buildings, and must be applicable for use throughout the life of the asset.  The solution is based on Uniclass2, a proposed development of the original Uniclass structure.  Uniclass2 was issued for consultation in 2013, and it is hoped that the comments received in response have been considered in developing the new solution.

A number of webinars have been presented by NBS recently, describing progress to date and more are scheduled for next month.  The recent webinars focused on demonstrating the overall arrangement of the tool and showing a little more detail of a number of selected aspects.  Unfortunately, classification wasn’t included in this round but more information on this was promised for future events.

A lot of progress has been made but it was clear that there is still a huge amount of work to be done before the April delivery date.  It is important that the output from RIBA Enterprises and NBS is informed by the need of the industry rather than their commercial links to their existing products,  so take the opportunity to visit the NBS website and look at the work they are doing.  Above all comment on what you see.  It might be the only chance you get.

Government Soft Landings

This is a blog by Peter Corbett, Principal Quality Inspector at Essex County Council

This is a blog by Peter Corbett, Principal Quality Inspector at Essex County Council

As a Local Authority employee I am well aware of the push for both savings and value for money, it is therefore reassuring to see the importance the Government is affording their version of ‘Soft Landings’.

The Cabinet Office sees soft landings as the ‘golden thread’ of BIM, rather than a delivery tool, and is looking for three key benefits from its implementation, those being; Improved Environmental Performance, Improved Financial Performance and Improved Functionality and Effectiveness.

The Government’s Soft Landings policy drawn up in September 2012 recognised that ‘The ongoing maintenance and operational cost of a building during its lifecycle far outweighs the original capital cost of construction, and GSL identifies the need for this to be recognised through early engagement in the design process.

To help the development of GSL a stewardship group was formed to which all government departments and agencies were invited. This group generally meets quarterly with around twenty department and agencies represented. It seeks to update the GSL implementation progress across departments, develop training ideas and determine ways of measuring the benefits that could be gained from the process.

GSL has been the archetypal snowball, steadily gathering pace as it moves toward 2016 when the Cabinet Office has asked for its adoption by all central government departments and agencies, and gradually increasing in size, as with each stewardship meeting more departments and agencies are in attendance.

I was fortunate enough to receive an invite to the last GSL stewardship meeting through my links with the BSRIA Soft Landings User Group and as a Local Authority representative, and was encouraged to see the enthusiastic approach to soft landings from some of the more engaged departments, they like ourselves see the advantages soft landings could offer (albeit from an FM focussed approach that more considers the ‘In Use’ benefits) and are eager for the evidence of this that case studies and their like could provide. Of course as with most matters concerning Central & indeed Local Government the journey is never straight-forward, and as could probably be expected the speed of soft landings adoption varies greatly both in levels of commitment and of development between each Government department and agency.

So what next for GSL? On Friday 7th November there was a GSL supply chain engagement day, to which all Government departments and agencies were invited and encouraged to extend invites to their design, construction and facilities management partners. Attendees were treated to seminars on what Government Soft Landings actually are, why they should be used and how they should be implemented, as well as what training and ongoing support could be provided.

Soft_Landings_logo-highIt was fairly evident from the nature of the questions from Government department representatives that there remains a lot of work to do to obtain both a participative and consistent approach across all departments, as well as the difficulty in impressing on the supply chain providers that success on a project is not merely about building to budget and programme. As pointed out by one contractors’ representative ‘We know of Soft Landings, but that’s where our knowledge ends’, a better description of what GSL actually is was requested with examples of what ‘success’ actually looks like, and also recognition that there is a clear shift from Capex to Opex in the governments construction expectations. All evidence that there is still much to do to achieve wider engagement in soft landings throughout the industry.

But there remains a high level of commitment to soft landings from the Government as evidenced by this event, and this is likely to soon have an impact on those of us in Local Government. In my own Authority we have been using the principles of soft landings in order to help improve the delivery of our projects in areas that have proved problematic; this has predominantly centred on the handover and defects resolution stages, and also end-user training on their new building. For us the ethos of soft landings has been extremely beneficial, but we have been fortunate enough to get the buy-in from our framework of contractors, again some contractors are more engaged with the practice than others, however with the Governments push for the use of soft landings it should encourage everyone’s participation in the process, and hopefully to the benefit of all involved; commissioner, client and contractor.

 

Blogger profile

My working career began early 1980’s in civil engineering, after taking various qualifications I moved into construction after an acquaintance encouraged me to become a clerk of works at the age of 21.  I joined Essex County Council initially as an assistant clerk of works and have remained with the authority for almost thirty years, latterly as the authorities Principal Quality Inspector. I have more recently acted as the construction performance manager on Essex County Council’s Contractors Framework, for which I am undertaking the role of Soft Landings champion. I am a Fellow of the Institute of Clerks of Works and the Construction Inspectorate having first joined the organisation in the 1990’s.

The BIM Level 2 jigsaw – nearly complete?

The Level 2 programme was defined in the BIM Strategy which is available at  www.bimtaskgroup.org

The Level 2 programme was defined in the BIM Strategy which is available at
http://www.bimtaskgroup.org

In my blog article back in June  I discussed how the UK Government had refined its Level 2 BIM requirement and express it in the form of compliance with seven components:

  1.  PAS 1192-2:2013 Specification for information management for the capital/delivery phase of construction projects using building information modelling
  2. PAS 1192-3:2014 Specification for information management for the operational phase of assets using building information modelling
  3. BS 1192-4:2014 Collaborative production of information. Part 4: Fulfilling employers information exchange requirements using COBie – Code of practice
  4. Building Information Model (BIM) Protocol
  5. GSL (Government Soft Landings)
  6. Digital Plan of Work
  7. Classification

Since then BS 1192-4 has been published, leaving just the Digital Plan of Work and Classification elements to be completed.  As reported previously, these were the subject of a TSB-funded competition and I thought it would be useful to give an overview of how the competition went and where it is now.  This is a fundamental piece of work that is set to have a huge impact on BIM in the UK and it is vital that as much of the industry as possible has an awareness of what is happening, and get involved wherever possible to help make it a success.

The competition brief was developed, with industry consultation, and has been administered via the Innovate UK (formerly TSB) SBRI programme under the title “A digital tool for building information modelling”.

The competition process involved two phases – Phase 1was a feasibility study, with organisations or consortia invited to submit proposals with funding of up to £50k (including VAT) available to each.  Three teams were awarded these phase one contracts:

  • RIBA Enterprises Limited, together with BIM Academy, BDP, Laing O’Rourke, Microsoft and Newcastle University
  • BRE Global Limited, with buildingSMART UKI
  • CIBSE on behalf of a group of industry professional bodies known as C8, consisting Association for Project Management (APM), British Institute of Facilities Management (BIFM), Chartered Institution of Building Services Engineers (CIBSE), Chartered Institute of Building (CIOB), Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE), Royal Institute of British Architects (RIBA) and Royal Institution of Chartered Surveyors.

The results of the Phase 1 stage can be seen here.

On completion of Phase one, two of these submitted bids for Phase 2 – RIBA Enterprises Limited and BRE Global Limited, and RIBA Enterprises Limited was awarded the single Phase two contract.

At the time of writing, the results of the Phase two competition had not been posted on the Innovate UK website so it has not been possible to compare what RIBA Enterprises has said it will deliver with the functional specification.

As RIBA Enterprises has developed Uniclass2, which it uses for some of its other software tools, it is probably safe to assume that the classification solution delivered as part of this competition will be based on that format.  That being the case it will be interesting to see how Uniclass2 is developed to cover all necessary instances, and not just those which may occur within the 3D model.  The classification system needs to be capable of capturing everything which may be held within the common data environment (CDE) in order to make the objectives of the standards such as PAS 1192-2 and PAS 1192-3 a reality – the PIM during construction and AIM during operation being the sole sources of information for further use, having been verified and validated against the EIRs and OIRs.

Many experienced BIM practitioners recognise the need for a comprehensive classification system to make information available throughout the life of an asset, letting it be used time and again rather than having to recreate it, and this project could make this a reality.  However, careful thought needs to go into it to make sure that everything that needs to be classified can be, and in a way that can be understood.

Safety in Building Services Design

This is a guest post by Richard Tudor of WSP

This is a guest post by Richard Tudor of WSP

Space, and the cost of providing space, for plant and building services  distribution is at a premium and designers often come under pressure to reduce the spatial requirements for building services installations. In order to discharge their obligations, designers must take care to provide safe means of access for installation, maintenance and equipment replacement.  In addition designers need to be aware of the regulations and legislation requirements that a design may impose on the installer and end user as a design solution can often impose additional legal

responsibilities, particularly in undertaking associated operation and maintenance activities. However, the active and continuing attention to safe access issues, throughout the design stages, is not always achieved as the designers’ attention can often concentrate on what is perceived to be more immediate concerns.

BSRIA’s publication Safety in Building Services Design BG55/2014 has just been published which provides guidance on designing for safety in both new and refurbishment projects.

The publication is aimed at designers and includes information on:

  • relevant legislation including CDM
  • hazards and risks including managing risk in the design process
  • understanding space requirements and access provision
  • designing for maintenance
  • plant room design
  • communication of risk information including representation of risk information on drawings
BG55/2014 Safety in Building Services Design

BG55/2014 Safety in Building Services Design

However, the diversity in type, configuration and possible location of plant, means it is not possible for this publication to give definitive guidance for all installations.

The publication provides a practical guide to assist the design process, aid design reviews together with providing a better understanding in designing for safety.  For example, included in the publication is a checklist on the considerations in designing for health and safety which can be used as part of the technical design quality review process.  In the pdf version of the publication this is included in an editable Excel format. Influencing factors, considerations and space requirement data useful in the design decision process with respect to providing safe access are highlighted in the publication.

The poor provision of safe access for maintenance could result in an increased likelihood of cutting corners or omission of maintenance and repair activities. This in turn, could result in building services failures that could adversely affect safety, legal compliance, productivity and quality of the environment.

BSRIA launches a new course on the 12th November 2014 providing guidance in designing for health and safety in the space planning of building services with respect to operation, maintenance and plant replacement. The course is intended for professionals involved in the design of building services but is equally relevant to contractors and other professionals within the industry. Young engineers in particular would benefit from the course.

On completion of the course delegates will be able to:

  • understand the specific considerations with respect to designing for safety for building services
  • identify discipline specific considerations in designing for safety
  • challenge designs in relation to health and safety in the design, construction and operations of building services so as to improve performance
  • understand relevant H&S legislation, codes of practice and guidance
  • understand the relationship between building services design and maintenance operations
  • understand the management of hazard and risk together with control strategies
  • locate information relating to health and safety to assist in design process
  • understand the consequences of failing to manage health and safety effectively
  • understand the importance of communication and provision of information in the design process

Richard Tudor is a Senior Technical Director at WSP and has been an integral part of the WSP Group Technical Centre for over 14 years. His responsibilities include technical quality, specification development, technical knowledge management, delivering training, designing for safety, providing technical support, and improving project delivery.

Designing for change

Ian Harman of Marflow Hydronics (BSRIA Members)

Ian Harman of Marflow Hydronics (BSRIA Members)

With the industry moving at such a fast pace, new innovations are being introduced all of the time. Manufacturers are inventing great new products that offer many benefits; solving the problems of the present to provide a better future. The biggest problem that they face, though, is launching these products on to the market. This is where BIM could really help. 

I think it’s fair to say that people don’t really like change. We like to stick to what we know and what we feel comfortable with. This seems to be the case in our industry. Many people, from consultants to installers, are still completing jobs and planning projects in the same way they’ve been doing it for years; that is in very traditional ways. A prime example is how there is still much use of two port control systems despite Pressure Independent Control Valves having been around now for quite a while. These newer products are faster to implement and more reliable in the long term, yet there is still a reluctance with some people to adopt the new technology.

It’s true that with any new product there’s inevitably a big learning curve to using them, and often training can be time consuming. There’s also the fear of risk. If people use a new product that they’re not so familiar with then there’s always the chance that it will go wrong. This could be because the user isn’t so experienced at using it, but also it could turn out that it wasn’t the ideal product after all and sometimes knowledge and experience can really help when making decisions. This is where BIM steps in.

Using BIM, manufacturers can create models, which I like to think of as ‘Lego blocks’, that they can send to customers to introduce them to a product. And they can do this long before any decisions have been made, at the very initial stages. The ‘Lego block’ would be a visually simplified model that not only clearly defines the spatial envelope and connection points, but also includes a wealth of ‘metadata’. This ‘metadata’ contains data fields specific to the particular products, such as flow rates for valves or electrical loads for powered devices.

BIM - Marflow Hydronics
That all means that clients can look at the products in detail and trial them in their plans from the very beginning. They will be given the time to properly analysis products and see how they will work within the system and how they will interact with other components.

By starting with the end in mind and properly understanding the system at the initial stage, it will help to future proof the project far down the line. It’s also the cheapest time to detect any issues. The easiest time to make a design or selection change is at the beginning of a project and BIM facilitates this in a much more user friendly manner than ever before. This would undoubtedly give them much more confidence in the products they’re looking to use and would, very importantly, remove that fear of risk.

BIM provides users with the time and ability to put much more thought into their projects earlier on, minimising that risk further down the line. This then increases the chance of far more successful project that works with the best products, potentially the latest and more developed ones, and there’s much more chance of it being on time and to budget.

BIM 2 - Marflow HydronicsManufacturers, like Marflow Hydronics, have been doing this to help bring new products into the limelight that otherwise customers may have been apprehensive about. More importantly, this has helped all parties get the right products specified when they may not have been otherwise. BIM may be the ideal solution to help us move more quickly into the future using more innovative products and having many of the niggling issues that have been around for so long vastly reduced, if not eliminated.

This was a guest post by Ian Harman, Technical Applications Engineer at Marflow Hydronics, BSRIA Member

If you are looking to find out more information about BIM, BSRIA runs two specific training courses:

There are also several other blog posts focused on BIM as well as a BSRIA BIM Network. 

A forward thinking attitude to energy management

Chris Monson, Strategic Marketing Manager of Trend

Chris Monson, Strategic Marketing Manager of Trend

Given that in parts of the world like Europe and North America some 40% of all energy used is consumed by buildings, both companies and wider society are increasingly focussing on the energy performance of their buildings, and how to improve it.

Building Energy Management Systems (or BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance. 

I’m Chris Monson, strategic marketing manager at Trend Control Systems, and I’d like to welcome you to the latest in a series of blogs where I, along with my colleagues, examine the issues affecting the building controls industry and the use of Building Energy Management Systems (BEMS).

It strikes me as somewhat bizarre that in an age where owners, managers and occupiers of commercial premises are under tremendous pressure to operate as energy efficiently as possible, so few developers recognise the long-term value of installing a fully featured BEMS at the construction stage. Such is the value and relevance of this technology, that to my mind it should be considered as important as other elements of the building services infrastructure that are designed in as a matter of course.

BEMS facilitate greater energy efficiency and the cost savings and the environmental benefits that can be experienced as a result of investment in this technology are considerable. A fully integrated solution can have up to 84 per cent of a building’s energy consuming devices directly under its control, offering greater visibility of energy use by monitoring services such as heating, ventilation, air conditioning (HVAC) and lighting.

According to the Carbon Trust 25 per cent of a building’s energy is used in lighting, and it is estimated that around a third of the energy consumed in this way in non-domestic buildings could be saved by utilising technology that automatically turns off lights when space is unoccupied. In addition, air conditioning can increase a building’s energy consumption and associated carbon emissions by up to 100 per cent, making it imperative that its use is tightly controlled.

So why isn’t the design and installation of a BEMS happening in the initial stages of a construction project? I’m afraid that the answer comes down to a combination of cost and lack of foresight. However, to fully understand why these two factors are proving so prohibitive to BEMS implementation, we need to understand a little more about the mind-set of the developer.

Developers tend to fall into two broad groups – there are those that configure buildings for others to inhabit and others who design and build premises for their own use.

When it comes to the former, the main driver is to save costs at the construction phase and little thought is given to the building’s future occupants and how they use the building. As there are no regulations stating that a BEMS must be installed, there’s a strong possibility that it won’t be. However, this lack of forward thinking leads to future occupants having to cope with inadequate visibility and control of their energy usage and, therefore, higher overheads and a larger carbon footprint.

Regarding the second group, it often comes down to the failure of owners to specify the need for a BEMS at procurement stage and make sure that they have systems in place that will maximise the energy saving potential of the building. While this type of developer will also have one eye on the cost of the project, the increased capital costs of installing BEMS is easily countered by the return on investment (ROI), with an average payback of just three and a half years.

Whichever way you look at it, the fact is that on a ROI basis early stage BEMS implementation makes sound economic sense. It can form less than one per cent of the total construction expenditure and energy savings of 10-20 per cent can be achieved when compared to controlling each aspect of a building’s infrastructure separately. The benefits don’t stop there either, as if it is incorporated with smart metering, tariff changes can be used to offer a strategic approach to energy management and control, and the data produced gives clear signposts for potential improvements.

I firmly believe that in the current business climate to construct a new build property without a comprehensive BEMS borders on foolhardiness. Organisations are faced with growing pressure to demonstrate carbon reduction policies and do all they can to lower their energy use.

Despite the controversy surrounding the introduction of the CRC Energy Efficiency Scheme, it is here to stay and is likely to extend its scope to incorporate more businesses in the future. In addition, The Climate Change Levy (CCL), Display Energy Certificates (DECs) and Energy Performance Certificates (EPCs) also affect businesses, while compliance with certification standards such as ISO 50001 put the onus on companies to demonstrate continual improvement in this area.

It should also be remembered that building occupiers are demanding greater visibility and transparency of their energy consumption and need access to data. A failure to meet this demand could mean that prospective tenants decide to go elsewhere.

Standardisation is playing an ever more prominent role and the most significant is EN 15232, which describes methods for evaluating the influence of building automation and technical building management on the energy consumption of buildings. It enables building owners and energy users to assess the present degree of efficiency of a BEMS and provides a good overview of the benefits to be expected from a control system upgrade. The use of efficiency factors means that the expected profitability of an investment can be accurately calculated and I’m pleased that a growing number of organisations are reviewing this document and implementing some of the best practice guidance it offers.

There are those who feel that regulation is the only way to make sure that BEMS are installed at the point of initial construction, although others are reluctant to see the introduction of more onerous legislation on an already pressured construction sector. At this stage I think that regulation shouldn’t be necessary if a long-term approach to energy efficiency is factored in and the benefits of a BEMS are recognised by more developers in the initial stages of a project.

Trend_RGB SMALLFor further information please call Trend Marketing on 01403 211888 or email marketing@trendcontrols.com. Trend are the main sponsors of this year’s BSRIA Briefing – Smarter ways to better buildings.

You can read more BSRIA blogs about BEMS here.  BSRIA’s WMI team also produce a BEMS market report – Building Energy Management Systems (BEMS) in Europe and the USA – which is available to buy from the BSRIA website. 

Buildings – Plugging the Performance Gap

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

What do The Titanic, London’s Millennium Bridge, and The Leaning Tower of Pisa have in common? One answer is that as structures they all failed to “perform” as expected. The Titanic, designed with the latest technology to achieve a success  rate of approximately 100% safe Atlantic  transits, actually achieved a disappointing 0%. The Millennium Bridge, fine and inspiring though it was, failed to take account the consequences of perfectly natural, if little understood, human behaviour – the tendency to walk in sync on a naturally moving structure – with potentially alarming consequences. It had to be radically re-engineered before reopening in 2002.

The Leaning Tower of Pisa, which I was able to climb last month, failed in the most fundamental requirement of most buildings – staying permanently upright – though in some-ways of course this very failure was the secret of its long term success and certainly the main reason that people like me still pay good money to climb it more than 800 years after it first started leaning.

When buildings fail to deliver the intended results, we talk about a “performance gap”. While this can embrace many areas including cost, safety and comfort, we tend to talk about this particularly where energy performance is concerned. This reflects the fact that energy performance is at least ostensibly a goal of most of those involved in the design, construction and management of buildings, and that as energy prices rise and concerns over the impact of greenhouse gas emissions become more acute, the sense of urgency can only increase.

Some of the reasons for this are highlighted in a useful new book “How Much Energy Does Your Building Use?” by Liz Reason (Dō Sustainability) whose launch I attended in London last week. The book highlights examples of buildings initially hailed as energy efficient which spectacularly failed to live up to their reputation. It also shows how these failings can emerge at any stage of the building process from initial planning and design through construction, commissioning and occupation and operation, and considers how these problems and shortcomings can best  be addressed and avoided.

What I want to focus on here is one central question: How do we know how our building is actually performing, let alone how it is likely to perform in future? The key here is information, which needs to be collected and then analysed, not just to show us any obvious performance issues but also point to potential problems or just unusual patterns that deserve further investigation and explanation.

This points to a central role for Building Energy Management Systems (BEMS). These are offered by a wide range of suppliers, including most of the major Building Automation providers, and present wide ranging functionality. Central to almost all of them is the collection and analysis of data, sometimes in prodigious volumes. A well implemented BEMS enables you to keep track of what your building is actually doing, irrespective of what it was intended or expected to achieve.

'Performance gaps' in buildings are nothing new...

‘Performance gaps’ in buildings are nothing new…

Another way in which the performance gap points towards BEMS is that while the value of BEMS has been widely recognised for some time in the retrofit market, especially for the huge mass of buildings constructed in 1960 – 1990, there has sometimes been a tendency to assume that more recent buildings, being generally built to much higher standards, can, to a degree, “look after themselves”. If a building really is “zero energy” then what is there to manage, at least from an energy point of view?

However, if there are basic failings in the design itself, the way it has been implemented or commissioned, or the way the building is operated in relation to its actual usage, then the performance gap can loom up large and un-ecological as a fire-breathing dragon. Sometimes the failings can be obvious: a stiflingly uncomfortable office can jump up and hit you as much as a wildly wobbling bridge. But in other instances, energy wastage is less obvious. Real performance issues emerge only when the actual data is collected and analysed over time.

This month BSRIA publishes the latest update of the study “BEMS Market 2014 Q2 :Developments in Europe and the USA”, a study which, with its regular quarterly updates, helps you to keep up to speed with the newest developments in this exciting and important area.

Design Framework updated to reflect the new RIBA Plan of Work

MEP deliverables during old and new Plans of Work

MEP deliverables during old and new Plans of Work

BSRIA’s highly regarded Design Framework guidance has just been published in its fourth edition as BG 06/2014. This version brings the guide up to date in its reference to the latest RIBA Plan of Work. This article summarises some of the key changes that have been made to Design Framework in this latest edition.

Design Framework now aligns with the new project stages, designated 0 to 7 rather than A to L, that were developed as part of the Government’s BIM Task Group work. These stages are more explicit in their support of collaborative working amongst the project team and place more emphasis on handover from construction to operation and on the in use phase. In addition, there is now a new Strategy stage, Stage 0, deliberately to give clients and portfolio managers the chance to consider the proposed project in the wider context of their whole built estate.

Many of the new stages align to old stages, or pairs of old stages. For example Stage 1 maps to the old Stages A and B, Stage 2 covers the old Stage C, and Stage 5 is the equivalent of the old Stages J and K. But there is a significant disconnect between the end of new Stage 3 and old Stage E. Stage 3 is expected to conclude with agreement between the main design disciplines about the volumes allocated to each designer such that these provide feasible system boundaries. The idea for this is that once these volumes are agreed, each discipline can go away and work up its detailed design more or less in isolation. Provided they stay within the boundaries of their agreed volume then all should be well when it comes to spatial co-ordination.

These changes to the overall structure of the Plan of Work have meant changes to the design activities listed in the BSRIA BG 06 pro-formas, and also some changes to the stage deliverables. As can be seen from the table, the first formal deliverables under the new Plan of Work regime have been brought forward to an earlier stage than previously. In BG 06 the exemplar 3-d models to illustrate the new end-of-stage deliverables have been updated and isometrics included. For the Stage 3 deliverable, the 2-d drawing exemplar has also been amended.

A final area of confusion is the way some stage names have changed, and this again has the biggest impact around Stages 3 and 4 in comparison with the old Stages D, E and F. Stage D used to be Design Development, Stage E was Technical Design and Stage F was Production Information. In the new scheme, Stage 3 is Developed Design and Stage 4 is Technical Design.

The new project stages will take some getting used to – BSRIA has presented a webinar on the changes and this can be accessed from the Webinars page on the BSRIA website.

BG 06/2014 – Design Framework for Building Services is now available in hardcopy, PDF, single license or multi-site license.

Proving the future – how to keep up with Building Regulations

"From a standing start in 2006 to today, the builders have grasped the importance of air tightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency" Mike Smith, Engineering Director

“From a standing start in 2006 to today, the builders have grasped the importance of air tightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency” Mike Smith, Engineering Director

The rapid adoption of airtightness testing and the ability of the industry to achieve the right result first time in 89% of tests is one of the success stories of the UK construction industry over the past decade. The BSRIA Compliance team tested over 10,000 dwellings and 720 non-dwellings in 2012 and found the average dwelling airtightness value was 4.89 m3/(hr.m2) envelope area at 50 Pa (against a maximum regulatory value of 10 m3/(hr.m2)).

From a standing start in 2006 to today, the builders have grasped the importance of airtightness testing as a proxy for quality of construction and the contribution good airtightness makes to energy efficiency. The testing itself is rigorous, robust and, arguably, now at a very low economic price. It has respectability provided by UKAS accreditation for non-dwellings testing, the training of testers and, in the case of dwelling testing, registered testers through the Airtightness Testing and Measurement Association (part of the British Institute for Non-Destructive Testing).

The mantra should be “Build tight, ventilate right”. As fabric standards improve, driven on further by the 2013 Building Regulations, the role of passive and mechanical ventilation systems increases in importance. Unfortunately in the world of unintended consequences, we are seeing dwellings achieving better airtightness values than the designer intended which of course means less air leakage (and associated energy waste), but this is only useful if the designed-in ventilation systems can cope with these outcomes. In a nutshell the infrastructure supporting domestic ventilation engineering has not developed at the same pace as the improvement in building airtightness.

There is of course significant current activity to help remedy this problem but, as is so often the case, we are now on the back foot with increasing numbers of examples of poor installations and the inevitable questioning of the value of mechanical ventilation solutions.

The systems we are talking about are not complex but they are sensitive to errors. What is missing is not so much the technology or science but the widespread creation and adoption of proper codes of practice. Mechanical ventilation (MV) systems and the more complex MV heat recovery (MVHR) systems have to be site tested to ensure they are extracting and supplying appropriate amounts of ventilation. In the course of its compliance testing BSRIA is seeing two main kinds of problems.

The first is the performance of the specified equipment in a given situation, i.e. that the fan is correctly selected to match both the actual application and the inherent system losses that the system components will introduce. In simple terms this comes down to understanding the resistance characteristics of ductwork and its routing and the resistance of terminal units both inside and out. There is a widespread misunderstanding that ventilation fan outputs are usually quoted with outputs measured in “free air”. In reality they have to overcome backpressures from fittings. Even where kits are bought we see alternative terminal units used, usually to meet architects demands for aesthetics.

The second is the actual installation of the associated ductwork where there is a very poor understanding of the dramatic effect on performance that can arise from bad workmanship.

In a recent case BSRIA found approximately one metre of flexible ductwork that had been stuffed into the cavity wall for a straight through the wall installation that is approximately 300 mm thick. An additional 100 mm dogleg had been introduced on site to match the actual positioning of a porch structure. The result was a lot of fan noise with almost zero movement. The fan, when bench tested with zero back pressure, had a performance of 22 l/s, the designed performance including the ducting was 20 l/s however the actual performance was 5 l/s.

As part of the “catch up” in dealing with the rapid rise in the use of domestic ventilation we have identified that the act of measuring MVHR performance using published guidelines will give false results if the correct equipment or correction factors are not used. There is an easy remedy but not widely used at present. The automatic volume flow meter with pressure compensation – more commonly known as a “powered diff” will provide an instantaneous and accurate value. A more common hooded anemometer will impose a back pressure on the terminal, ducting and fan under test and the readings must be corrected (post use) specifically for both the anemometer model and the actual fan under test. More detail on this can be found in BSRIA’s “Domestic Ventilation Systems – a guide to measuring airflow rates – BG46/2013”.

And all of this is compounded by a lack of thinking regarding operational needs, limited controls, and poor instructions to the user, especially on what maintenance is required to keep performance at its peak.

So, airtightness demands have led to unforeseen consequences and something of a reaction against the use of mechanical ventilation. What then can be done to avoid making the same mistakes on other systems and concepts?

With fabric issues now largely dealt with in the Building Regulations it is likely that new focus will fall on the efficiency and operation of the MEP services in dwellings. If modelling and measuring the thermodynamics of a brick wall is difficult imagine how complex a multivalent heating system is going to be! And before being put into use, these complex integrated systems will need commissioning and possibly proving as well.

The Zero Carbon Hub has recognised that we will need to devise new test methods and regimes that, for example, will evaluate how the solar thermal collector performance meets expectations when linked with the ground source heat pump system that serves hot water generation, underfloor heating and thermal storage, in concert with a biomass boiler or room heater. Before regulation stimulates the market we need to have good practice guidance and proven on-site commissioning and test processes in place. This work is urgent and needs significant central support. With the next revision of Part L expected for 2016 – this time aimed at achieving zero (or nearly) carbon homes, time is not available to embark on a protracted negotiation with innumerable and varied industrial interests. Certainly industry’s support will be available but only for a properly directed and centrally funded programme.

If we fail to put into place a mechanism to improve the on-site verification of performance of new systems we will only have ourselves to blame for the next set of well publicised “failures to launch” and the consequent set back of achieving national aims.

BSRIA provides a range of Compliance Testing services for stress-free compliance to Building Regulations including airtightness (Part L), sound insulation (Part E) and ventilation testing (Part F).

%d bloggers like this: