BSRIA relaunches Topic Guides

Construction compliance 3BSRIA is pleased to announce the relaunch of our information topic guides with the first release of this ‘At a Glance’ series TG07/2015 At a Glance – Airtightness available to download from the BSRIA website now.

The BSRIA Topic Guides are designed to be an at a glance publication introducing readers to key industry topics and suggesting further reading. BSRIA’s Information Centre is relaunching them with the aim of providing an introduction to key topics in the industry providing readers with an understanding of the area and how they can learn more. A new addition to the topic guides will be a feature by a BSRIA expert on the subject, offering a fresh insight. The airtightness topic guide features an insight into the legislation by our expert David Bleicher.

BSRIA’s Information and Knowledge Manager Jayne Sunley said ‘The topic guides are a great way of providing members and non-members alike with good information that will hopefully clarify some of the questions they have about topics they are new to, they’re not designed to be an all-encompassing guide but rather a starting point for anyone looking to learn more. The addition of the expert insight is just a way of showing readers that there is more to the topic than they might have first thought’.

TG07/2015 At a Glance – Airtightness offers readers a view of why airtightness is important for our building stock and how a building can be tested. It is now free to download from the BSRIA website for members and non-members alike.

Future 2015 titles in the At a Glance series will include Legionella, Data Centres and Smart Technology.

Overheating in homes

This post was written by BSRIA's Saryu Vatal

This post was written by Saryu Vatal, Senior Consultant of BSRIA’s Sustainable Construction Group

BSRIA’s Residential Network organised an event on the 22nd of July focussing on the issue of overheating in homes with an excellent line up of speakers. Nicola O’Connor started the day summarising an extensive research project by the Zero Carbon Hub that brought together input from government, industry and academic experts to understand the challenges around tackling the risk of overheating in homes (http://www.zerocarbonhub.org/current-projects/tackling-overheating-buildings). Chris Yates from Johnson and Starley made an appraisal of the assumptions and requirements within the Building Regulations and associated guidance as well as the implications for mechanical ventilation system manufacturers. Neil Witney from DECC explained the challenges around defining and regulating of overheating within homes, current policies and mechanisms that may be introduced in the future in response to the growing body of evidence highlighting the issue. Paul Ciniglio from First Wessex shared the organisation’s findings from several research projects and experience from their own developments, which resonated with issues highlighted by members of the audience. Bill Gething of Sustainability + Architecture and professor at the University of West England brought into perspective how changes in the way homes have been designed and built over the recent years has led to a shift in the performance of homes. James Ford, partner at Hoare Lea discussed some key considerations for designers to address the issue at early stages, to help minimise risk and dependence on active cooling solutions.

Extent of overheating

Evidence indicates that up to 20% of homes in England may already be overheating. Areas where additional risks have been highlighted include:

  • Common areas in apartment blocks, especially where community heating is installed – these areas are not assessed using SAP as they are outside the dwelling envelope. In reality, being unoccupied spaces these are often not modelled for their thermal performance (and energy use) at all. Community heating is being incorporated in an increasing number of projects and the supply network remains live even in the summer to meet the domestic hot water demand. Ensuring that the specification and installation of insulation for the distribution pipework is adequate is becoming increasingly important as buildings are made more airtight. Often stairwells and circulation areas have a high proportion of glazing and, with recent improvements in the general standard of construction and materials, tend to retain a large proportion of the heat gains. It is now important to incorporate a ventilation strategy for these spaces so that the accumulated heat can escape.
  • Urban areas – the average temperatures in city centres can be more than 4°C higher than rural areas. Flats are more common to city centres and these are often close to sources of noise and air pollution and have limited, if any, potential for cross ventilation. All these factors can combine to limit the effectiveness of natural ventilation in addressing the build-up of heat and not just in the summer. Building designs that incorporate large proportions of glazing in their facades, such as penthouses, if not carefully designed, can require air change rates that are unrealistic to achieve, using natural or mechanical ventilation systems.

Need for a definition

A number of sources and definitions are being referred to currently when evaluating for the risk of overheating in homes. These include CIBSE’s Environmental Design Guide A (2006) which sets standards for comfort, although it is not mandatory to use this to demonstrate compliance with the Building Regulations. Dynamic modelling through tools such as TAS and IES offer the opportunity of making a more comprehensive evaluation than SAP, but this option is skill, time and cost intensive. Building Regulations do not relate to limiting overheating for thermal comfort, just limiting the use of fuel and power for air-conditioning. The minimum evaluation for demonstrating compliance with Criterion 3 of Approved Document Part L of the Building Regulations needs to be carried out using SAP. While SAP is not intended to be a design tool, it is accepted that it is the default tool the industry uses widely.

Research projects have highlighted that dwellings can demonstrate a risk of overheating when evaluated against the CIBSE standard but not when modelled in SAP. Surveys from the Zero Carbon Hub study showed that nearly 60% of the housing providers surveyed had checks in place to assess the risk of overheating. However, only 30% of these housing providers explicitly included the requirement for considering the risk of overheating as part of their employees’ requirements to architects and designers. This suggests a missed opportunity for the issue to be addressed early on in the process, when cost and energy efficient measures may be effectively incorporated.

There are several challenges around the definition of conditions under which overheating can be said to occur as several factors contribute to this, including but not limited to air and radiant temperatures, humidity, air velocity, level of activity the adaptability of the individual. There are several checks that can be built into the design process which can help identify the risk at an early stage and allow for a method for mitigating these to be set up and followed through.

Contributing factors
The energy efficiency of homes in the UK has improved significantly in terms of reduction of space heating loads. This has come about in new homes through Approved Document Part L 1A of the Building Regulations and in existing homes through schemes such as the Green Deal. Homes are now less leaky and better insulated to keep warmth in but attention and emphasis is needed on measures to facilitate the expelling excess heat adequately when temperatures rise.

Homes are expected to provide comfortable conditions for occupants all year round and through a range of different occupancy patterns, which may in reality be considerably different to the standard assumptions made in modelling tools like SAP. It is possible that if modelling for thermal comfort is carried out assuming worst case assumptions for occupant density, external conditions and hours of occupancy, many homes would require mechanical cooling. There are, however a number of common sense measures that can be applied to ensure the impact of key contributing factors are minimised. These include controlling solar gains from south and west facing glazing and making provisions for adequate, secure ventilation especially when thermal mass has been incorporated in the structure.
The current extent of overheating in homes must be seen in the context of the anticipated changes in climate. With external temperatures expected to rise with an increased frequency of extreme weather conditions, homes built today must be fit for purpose for warmer summers.

Mechanical cooling?
There has been a rise reported in the installation of mechanical cooling systems in homes in the UK, more noticeably so in the south. While this may be an expected feature in high end homes, the cost of running these systems can be prohibitive, or at least perceived as so, for households where minimising expenditure on energy and fuel is a priority.
There is potential to develop low carbon mechanical cooling systems such as reversible heat pumps. The large scale uptake of these can however have some serious implications for energy supply and the capacity of the grid to accommodate a draw in peak summer months.

Way forward
In addition to affecting comfort, exposure to high temperatures over prolonged periods can have a significant impact on the health and well-being of residents. It is critical therefore to agree on a set of parameters that can help define overheating in homes and this should be carried out with input from bodies such as Public Health England.
Until a definition and modelling strategy is developed, designers and housing providers can refer to several good practice guides and research studies that help embed a common sense approach to design. There is significant potential to mitigate the risk of overheating in homes if early stage design decisions are taken with due consideration for the issue. The limitations of mechanical ventilation systems to help achieve comfort in homes must be acknowledged so that the final burden of an ill-considered design does not rest with the occupants.

References and further reading
http://www.zerocarbonhub.org/sites/default/files/resources/reports/ZCH-OverheatingInHomes-TheBigPicture-01.1.pdf
Design for Climate Change, Bill Gething and Katie Puckett, RIBA Publishing Feb 2013
http://www.arcc-network.org.uk/wordpress/wp-content/D4FC/01_Design-for-Future-Climate-Bill-Gething-report.pdf
http://www.zerocarbonhub.org/sites/default/files/resources/reports/Understanding_Overheating-Where_to_Start_NF44.pdf

To find out more about our Residential Network and to download the presentations from this meeting check out BSRIA’s Network pages.  To find out more about all of BSRIA’s networks contact tracey.tilbry@bsria.co.uk.

Summary and Opportunities – Smart Cities and Smart Energy

Bill_Wright_3

Bill Wright, Head of Energy Solutions, ECA

Bill Wright, Head of Energy Solutions, ECA, briefly summarised the BSRIA/ECA Conference in Dublin on the 11th June 2015 looking at previous papers and highlighting a few areas for further discussion / questioning . A few topics that came to the fore in the presentations were:

Sustainability – what actually is the meaning of this? Is a business sustainable if it is highly energy efficient, uses recycled materials and has a very low carbon footprint, or is a sustainable business about being in business tomorrow? It is best to be a combination of both but what is the best mix? Ethics can also come into this. A difficult question which can be discussed at length!

Another area for discussion is who pays for the infrastructure put in place for these Smart Cities? It is not so long ago that you paid for internet access in hotels and public areas, now it is generally regarded as being free, but is it? The costs are being absorbed into everyday prices as we begin to take internet access for granted. Ultimately we all pay. The installation of Smart meters and their operation will be paid for by higher energy bills, but it is hoped that the cost will be offset by lower energy usage. Time will tell.

Smart meters were discussed and compared between the UK and Ireland. The Irish ‘thin’ meter seems more compatible with major software changes as all the ‘intelligence’ is in a central processor unit, away from the meter. The UK version has its own processor. There is a danger it will be obsolete before the final units are installed.

Smart meters will bring remote monitoring down in price and improve availability of data as well as the reality of being able to monitor peoples’ actions in buildings. Another ethical question – how far do we go in this? Actions such as putting the kettle on or heating can be monitored bringing in the possibility of monitoring care homes – but this could lose the human contact.

There was considerable emphasis on Smart Grids and how the nature of power generation was changing as renewable energy sources at the periphery of the grid network were providing an increasing proportion of the power required for a country. Networks were designed for central power plants distributing electricity to the periphery, not the other way round. Considerable effort has to be put in to keep the system stable as the proportion of renewable or local energy sources proliferate. New standards were being developed as part of the international wiring regulations on how to integrate all these systems together. These may appear in the next edition of the UK IET Wiring Regulations, BS7671.

There was mention of the European super grid where power can be transmitted east to west or north to south to enable power to be generated in the most advantageous places and move to meet peak demands in various countries at different times.

All of this will be controlled by, or use the internet for communication. How secure is this? Many examples are available of systems being hacked into and taken over. How can this be stopped when we become ever more reliant on secure communications? Systems must be designed in such a way so as to be impregnable!

The redevelopment of the Dublin Institute of Technology was given as a good example of sustainable development where many systems, design and construction could be integrated on a new site to give an excellent performing series of buildings. Good initial design and programming the construction is the key to the success of this.

All of this brings the building controls industry into greater importance and our profession must grasp this and ensure that systems are designed and installed to the highest standards. This gives many opportunities to get involved, especially on the installation side where it is deemed to be at present strictly for specialists. New areas of building design such as power over data and LVDC systems should be grasped and brought into use to improve energy use and overall sustainability. The recent announcement by Tesla of the home battery system to enable PV systems to store energy to be used overnight is an exciting development which we can all use.

We are working in exciting times and it is great to be in the Building Services Industry. Let’s keep ourselves at the forefront of technology for the good of all.

The presentations from the Energy and Sustainability Network event are available to download from the BSRIA website. 

BSRIA BIM Network event review – Delivering the Level 2 BIM tools

John Sands blog 1BSRIA’s BIM Network focusses on bringing particular issues around BIM to its members in an informal environment.  As part of this mission, it has previously held two events specifically looking at the Innovate UK (formerly Technology Strategy Board) competition to provide the missing Level 2 BIM components – the digital plan of work (dPoW) and the classification system, all wrapped up in a user-friendly on-line tool.

The competition was won by RIBA Enterprises, with a team including NBS, BIM Academy, BDP, Laing O’Rourke, Microsoft, Mott MacDonald and Newcastle University.  The period of the initial delivery phase was six months with a due date of mid-April.

This topic was first looked at in the Network in February 2014 when the competition was about to be launched, and a second event in September reported on progress and the outcome from the second stage of tendering.

The latest event, held on 21st April 2015, was timed to follow hot on the heels of the launch by RIBA Enterprises.  As it turned out, a beta version was the subject of a ‘soft’ launch, made at the BIM Show Live on the 8th April, with the ‘hard’ launch now planned for some time in June.  The contract calls for RIBA Enterprises to ‘maintain’ the product (known as the BIM Toolkit – but more about the title later) for five years so development is expected to continue.

Almost thirty people attended the half day event, and represented a wide cross section of the built environment industry with designers, constructors, manufacturers and utilities suppliers all taking part.

The format for the event was very simple, with the aim being to give as much time for debate as possible.  Following a brief introduction from the chairman, Rob Manning from the Government’s BIS BIM Task Group gave a presentation describing the background to the UK Government’s Level 2 BIM requirement, and to the Innovate UK competition.

John Sands 2Rob’s presentation ran through eight key themes, all seen as vital to enabling effective Level 2 BIM:

  1. The Level 2 BIM journey
  2. Consistent work stages
  3. The Employer’s role
  4. Innovate UK project – A digital tool for building information modelling
  5. Digital Plan of Work
  6. Classification
  7. Validation tool
  8. Multi mode access

The first three items demonstrated the need for BIM Toolkit, and the remaining topics explained the requirement contained within the Innovate UK competition.

Sarah Delany of RIBA Enterprises then gave a presentation on the Toolkit, giving some background to the project from RIBA Enterprises’ perspective, and demonstrating its main features.  The presentation looked at the various features of the Toolkit, against the backdrop of the project phases identified in PAS 1192-3:2013:

  • Assessment and need
  • Procurement
  • Post-contract award and mobilisation
  • Production
  • Following hand-over then “in-use”

The BIM Toolkit is a project-based tool.  As well as the usual project information, the tool lets the user input data and assign roles at each stage of the project (the RIBA 2013 Plan of Work is used).  Certain key themes are displayed in the pane on the left hand side (see red box in the image below) which can be completed for each stage.

John Sands 3The Toolkit also incorporates a classification structure (Uniclass 2015), and a data validation facility, although these weren’t included in the presentation.

There was a lot of information to take on board and the coffee break after the last of the presentations was welcomed by all.  It also gave the audience a chance to collect their thoughts and frame some telling questions.

As was expected, the questions were wide-ranging, from how the tool affected what information manufacturers were expected to produce, to how the tool was intended to be used.  This latter enquiry highlighted a key aspect of the tool, which had previously been misunderstood – at least by us.  One of the MEP constructors asked if the tool was meant to be hosted in the project environment, where all members of the team would be able to see it.  Rob Manning’s response was that the tool was meant to be used by the client, who would then export it into another environment for use by the project team if required.  The same person then asked if it was in fact a tool for the client and Rob Manning said that was indeed the case. We must admit that at that point we were struggling to see the collaborative element of the Toolkit.

The name of the tool also raised some questions.  Given that it was for the use of the client, someone asked if the name of Toolkit was perhaps not as helpful as it could be.  Rob Manning said in response that perhaps the name may need to be reconsidered.  Someone in the audience suggested that EIR Writing Tool or Briefing Tool may be more appropriate.

BSRIA is considering holding a similar event in early June.  This will give the industry another opportunity to ask questions once they have had a chance to look at the Toolkit in more detail, and consider how it relates to their working environment.  This will also act as useful feedback to RIBA Enterprises at the end of the beta testing period and help to shape the new release, currently due sometime in June.  In the meantime, BSRIA agreed to take any comments attendees may have between now and June and feed them back to RIBA Enterprises.

In summary, it was good to see the BIM Toolkit and to hear the Government client’s aspirations.  Also, it is worth bearing in mind how much has been achieved in such a short space of time.  However, we think that there is a lot of work still to be done to get the beta version to what was intended in the original competition brief.  It will be interesting to see how the June release has progressed.

Have a look at the beta version of the BIM Toolkit (www.thenbs.com/bimtoolkit) and send any comments to RIBA Enterprises.  It’s important to have your say and to help make the final output of real value to the construction industry.

BSRIA provides one-day training courses to introduce BIM and how to implement a BIM plan.  Visit https://www.bsria.co.uk/information-membership/events/ for more information

Renewable Energy – The Vital Missing Link

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

For years, renewable energy, especially solar power and wind, has offered the tantalising prospect of almost zero carbon energy; tantalising because, even as costs fall, solar and wind are inherently unreliable, especially in temperate climates such as those that we ‘enjoy ‘in regions like Western Europe, and much of North America not to mention most of the developed world.

While a lot of progress has been made in demand response, which manages the energy that we need to match that which is available at any given time, we need a cheap, safe and efficient way of storing electrical power. Up until now, storage of electrical power in particular has been expensive and inefficient, and sometimes a bit scary.

The electrical vehicle market of course already faces this problem in spades. Electric cars are never likely to become main-stream so long as they need to go through a lengthy recharge process every 200 miles or so. It is therefore no surprise that much of the running is being made by manufacturers of vehicle batteries.

Tesla’s announcement that it is moving into the home energy storage market could represent a significant step. Being able to store electrical power not only makes local wind and solar power generation more practicable, it could also be invaluable in the many areas of the world where the grid is unreliable or virtually non-existent.

The biggest barrier, at least initially,  is likely to be the price tag. The 7kW battery which could, for example power a laptop for two days, or run one full cycle of a washing machine, or boil 10 kettles, will cost $3,000 to buy: That’s a very pricey home laundry service, and a frighteningly expensive cup of coffee, especially if you only need to use it occasionally.  The 10kW version represents slightly better value.

At this stage this is surely going to appeal only to wealthier individuals living away from a reliable grid, or those willing to pay to make a green gesture.  However, as with other technology initially aimed at the ‘smart home’ we may well find that much of the demand is actually from businesses. If you are running a business, even a small one, then any loss of service can do you immense damage. If an investment of a few thousand pounds or dollars can help guarantee that you will keep running, then it may well seem like an attractive return on investment.”

A further significant sign is Tesla’s announcement of an alliance with the international Energy Intelligence software supplier EnerNOC, which already has a presence in the USA, Canada, Germany, the UK, Switzerland, Ireland, Brazil, Australia and New Zealand.

Ultimately, success for energy storage in buildings, as in vehicles is likely to hinge on the two Cs: cost and capacity. It is a familiar catch 22 situation with most new and emerging technologies, where the market is waiting for the price to fall, but, other things being equal, production costs will only fall once you have achieved  real economies of scale.  The other factors that could influence the market are regulation, requiring builders or building owners to make provision for storage, or someone willing to take a loss leading initiative.

Safety concerns will also need to be allayed, given problems that have occurred with various types of battery technology, whether in laptops or vehicles. Storing a lot of energy in a very small space, inside the home is always going to raise concerns. And while batteries may offer the most promising option at the moment, other forms of energy storage might prove more effective in the end.

Still, the paradox is that sometimes problems get solved precisely because they are so big. The whole direction that the world is moving in, the growing realisation that we need to slash CO2 emissions,  demands cheap, efficient, safe energy storage. It seems likely that companies like Tesla, along with the other major energy companies involved in energy storage  will continue to concentrate their fire power on this until a viable solution emerges. And for the first few who get this right, or even approximately right, the potential returns are huge.

For then we really will have found the missing link.

Why the industry needs to be uncomfortable with current ways of working

This blog was written by Richard Ogden, Chairman of Buildoffsite

This blog was written by Richard Ogden, Chairman of BuildOffsite

I am delighted to have this opportunity to contribute a blog – particularly at a time when a hugely influential industry like BSRIA is exploring the need for the industry to change its processes.

I have worked in the construction industry for more than 40 years – as client, contractor and property manager. In all that time there has been an almost constant call from voices drawn from right across the industry, from Government and from the media for the industry at large to change its processes and ways of working. To do things differently – to work collaboratively – to partner – to adopt innovative processes – to invest in and adopt new technologies and project management practices and so on. The reason for this clamour is always the same – the need to improve performance and productivity, the need to be less wasteful and more sustainable, to improve the image of the industry, to deliver better value assets, and to make the industry a better and safer place in which to work.

All good and well intentioned stuff but it does seem to be a peculiar feature of the construction industry. I don’t for example hear anything similar coming out of the automotive or consumer products sectors. Industries where investing in change/innovation is constantly being driven by the unforgiving hard edge of competition. OK- I hear (but do not accept) the mantra that construction is in some way different from other industries and frankly I recognise that there is still a whole lot of life left in this view of the industry. I am certainly not going to beat myself up in challenging this position when there is so much more constructive work to be done.

The case for change within construction often comes wrapped up within the covers of a report from an industry or Government appointed committee together with recommendations for action plus of course a set of targets. Inevitably before long yet another report will come delivered by yet another committee having chewed over an almost identical bone which will have come up with broadly similar proposals and another set of targets. All seamless and without any sense of continuity of message or indeed continuity of action.

Don’t get me wrong I am not against this approach as a mechanism to stimulate discussion and debate and indeed I was a member of the Movement for Innovation. However, it’s just that I don’t see much in the way of connection between broad based calls for change and the practical decision taking that goes on day in day out within individual construction businesses looking to win work and improve profitability and competitiveness. Close coupled to this is the reality that the status quo is for many a very comfortable place in which to operate. Unless there is a pressing need for a company to do things differently the chances are that sticking to the knitting will be an attractive option. Why break step if your competitors are operating in much the same way and if business is good.

In my experience it is only when individuals decide that they are uncomfortable with or no longer willing to simply go along with the way things are that meaningful change is likely to happen. If enough individual businesses decide to do things differently then there is the prospect that a sizeable part of the industry will change how it works – not because a report has made recommendations but because they are convinced of the need. Encouraging more decision takers within the industry to be uncomfortable and then encouraging the uncomfortable to take decisive action is how substantive change can happen.

Sometimes change becomes necessary if a business is to survive and prosper. When I worked for a client the cost of construction delivered traditionally became more and more expensive until the point was reached where the business could no longer afford to invest in new construction projects because the cost was not justified by the revenue that the investment would deliver. Think about that for a minute we were a serial client wanting to invest in new construction to help grow our business and to create jobs but the harsh reality was that we had been priced out of the UK market. I suspect that it will not be long before this phenomenon reappears in some sectors of the UK market.

Our decision was quick in coming – if the traditional industry was not able or willing to provide us with the built assets at a price we could afford and to deliver within the timescale in which we needed the assets then we would change our construction model and our supply chains and take on board the challenge of stripping out a significant amount of the waste that we knew to exist within the traditional industry in order to deliver the projects at a price that worked for us and within a timeframe that was acceptable to us. Working in close collaboration with our project partners we demonstrated that it was possible to simplify processes, strip out waste, adopt standardisation as much as possible and most importantly take that essential step of maximising the use of factory made offsite solutions to minimise the need for construction work to be carried out on site. Constructing on site from a set of commodity materials and products is inevitably going to be uncertain and potentially challenging involving low levels of site based productivity, indifferent quality and uncertainty of build programme.

The results we achieved were powerfully impressive in terms of the cash savings made, the additional value we gained and the much faster build times that we achieved. All this – including protecting the margins of our suppliers – was achieved by minimising all forms of waste. That was just fine as far as I was concerned because as a client given the choice I would not want to pay for waste and inefficient processes. I would want to pay for right first time quality, build programmes that are realistic and cost in use that is meaningful.

The learning acquired as a result of this forced change stood my company in good stead and became our standard construction practice. Our approach was also taken up by many other leading clients.

We were not talking about rocket science. The steps we followed involved a relatively simple approach including: giving clear leadership; being sure about what we wanted to achieve; listening to our suppliers and encouraging their advice; being collectively prepared to rethink every aspect of construction – absolutely no sacred cows; not being prepared to accept the message that this or that couldn’t be done – it usually can; be open minded; recognising that there will always be scope to do things even better next time around.

This approach and in particular a recognition that other than for site specific elements it is almost always better to assemble building and civil engineering structures on site is fundamental to the work programme that Buildoffsite has been advocating for more than 10 years. Together with our Membership we will continue to make the case for the increased use of offsite solutions based on sharing information on the innovative projects that our Members have delivered, working together to develop new innovative solutions, promoting new technologies and encouraging the take up of information modelling and the application of lean principles to identify opportunities for introducing more efficient processes.

I am delighted that our Membership continues to grow bringing together leading clients, suppliers, investors, skills and research organisations and so on. The common denominator is that our Membership and those organisations we work with to partner knowledge transfer are all committed to do things better – at a practical level to make change happen and to support continuous improvement.

Front cover imageThe case for offsite solutions will be proven to the satisfaction of clients and suppliers by the tangible project benefits delivered by projects that incorporate offsite methods. This applies just as much to the delivery of building services as it does to all other construction elements. However, there will be no free lunch. An approach based on the use of offsite solutions will need to deserve to be commercially successful. If offsite solutions fail to be competitive with traditional methods on whatever basis the customer deems appropriate then they will not be adopted.  That is precisely how markets should operate. However, I hope that in comparing the performance of offsite solutions with traditional solutions the assessment will include all relevant factors that impact on value including time, cost, quality and cost in use. For example it can still be the case that the precise cost of a potential offsite solution will be compared with the theoretical and highly uncertain predicted cost of traditional construction. As construction inflation increases this simplistic method of assessing project value is likely to become increasingly unreliable. We are working closely with the industry’s professional institutions to improve the understanding of offsite construction and to support the development of new skills.

I have no doubt that the case for offsite solutions will continue to grow and the market will expand rapidly across all sectors. I also have no doubt that we have only just started to scratch the surface in terms of our understanding of what can be achieved in reducing cost, improving client value and improving the performance of the industry. Remaining open minded and being committed to challenge the status quo will continue to drive innovation and to effect the changes that we are called on to support.

If I can pass on one final suggestion it would be to encourage everyone in the industry to be uncomfortable with current ways of working. If we could achieve this we would be well positioned to move on to effecting change.

If anyone wants to learn more about Buildoffsite check out our web site www.buildoffsite.com

Are they ready yet? – Delivering the Level 2 BIM tools

TSB SBRI Competition – A digital tool for building information modelling

TSB SBRI Competition – A digital tool for building information modelling

As you will no doubt have seen the UK Government has refined its BIM Level 2 requirements over past months and now describes them in terms of compliance with a number of documents and tools (see earlier blog article on 7 pillars).  Most of these are already available and the last ones are currently being prepared.  In September 2014 RIBA Enterprises was awarded the contract by Innovate UK (formerly the Technology Strategy Board) to develop a digital plan of work (dPoW), an accompanying classification structure and a digital interface through which to access it all. The first phase is due for delivery in April this year, with further releases planned for later in the year.  The work is being carried out by NBS, a company wholely owned by RIBA Enterprises and which is best known for producing the NBS specification writing product.

This work is very important and the outcome has the potential to be of benefit to parties throughout the construction and operation markets.  The dPoW will provide assistance for clients in preparing their employer’s information requirements (EIR), and also for the supply chain in preparing BIM execution plans (BEP), their response to the EIRs.  It will also describe the data and information manufacturers need to include with their products to meet BIM requirements.

The classification system being provided needs to enable information and data to be labelled in a consistent manner, making it readily available for reuse. It must be as suitable for infrastructure as it is for buildings, and must be applicable for use throughout the life of the asset.  The solution is based on Uniclass2, a proposed development of the original Uniclass structure.  Uniclass2 was issued for consultation in 2013, and it is hoped that the comments received in response have been considered in developing the new solution.

A number of webinars have been presented by NBS recently, describing progress to date and more are scheduled for next month.  The recent webinars focused on demonstrating the overall arrangement of the tool and showing a little more detail of a number of selected aspects.  Unfortunately, classification wasn’t included in this round but more information on this was promised for future events.

A lot of progress has been made but it was clear that there is still a huge amount of work to be done before the April delivery date.  It is important that the output from RIBA Enterprises and NBS is informed by the need of the industry rather than their commercial links to their existing products,  so take the opportunity to visit the NBS website and look at the work they are doing.  Above all comment on what you see.  It might be the only chance you get.

Should Building Managers worry about scary movies?

threatsBuilding managers thinking of films to see this winter may give some thought to a previously little known comedy largely set in North Korea.

The successful cyber-attacks on Sony, one of the world’s best known corporations, and which lives and breathes digital technology, resulted in the release of reams of sensitive information, and led  Sony to delay the opening of the film. All this may on the face of it have little to do with the nuts and bolts of building automation, but it does fire another warning shot across the industry’s bows.

We have known for some time that buildings are vulnerable to cyber-attack. Not only can they be major targets in themselves, but they often offer an easy “back” door” into an organisation’s wider IT network. The successful attack on Target stores in the USA gained access via the company’s HVAC system which in turn allowed them into the more lucrative customer data records. BSRIA research shows that, in the USA for example, over 90% of all larger buildings (i.e. those with more than half a million square feet of space – or c. 50,000 m2) have some kind of building automation and control system (BACS), and many are to some degree at risk.

What is striking is that in so many successful attacks on buildings or infrastructure the problem had less to do with the cyber-protection systems in place than with the way in which they were being maintained and operated. At Target, alerts were generated but not acted on until after much of the damage was done. The earlier attack on Google’s Australian offices in Sydney were linked to the fact that an older version of the Tridium platform was still in use.

Many organisations lack effective processes and procedures, which in turn is linked to the fact that, even within the same organisation, building services and IT tend still to work in separate, parallel worlds.

All of this is compounded by the fact that BACS systems increasingly have at least one foot in the Cloud, and often several. Almost all major suppliers of BACS and Building Energy Management Systems (BEMS) offer at least the option of cloud based analytics, and the ability to access and manage multiple buildings remotely is seen as almost a “must-have” – outside of industries which have traditionally been hypersensitive about security. The cloud brings huge technical, social and financial benefits, but also greatly increases risk, as does the general spread of IT based functionality through buildings and devices, a process that the ‘internet of things’ is set to expand exponentially.

Major suppliers of BACS systems are talking publically about ways of addressing the challenge, and companies like Lynxspring are establishing a reputation in this area. In the UK the Institute of Engineering and Technology (IET) issued a Code of Practice for Cyber Security in the Built Environment in November 2014.

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Cyber-attacks tend to be motivated by political, ideological, or financial motives, or by a combination of mischief and malice. On all these scores, major buildings remain vulnerable especially when they are associated with prominent organisations, whether private or public.

In the latest edition of BSRIA’s market briefing Threats / Opportunities for Building Automation Systems, we look further at the cyber threat and what is being done to counter it. The study also looks at other major trends that are changing the profile and prospects of building automation. These include the development of more intelligent HVAC systems, (whether Direct Expansion or VRF based), the growth of ‘smart homes’ solution which are also snapping at the heels of the BACS market at the “lower end” of commercial buildings, the growing importance of building analytics and big data, and the rise of potential new global players, especially in countries like China and India.

We will be following these and other emerging trends through the course of 2015. It should be as exciting anything that Hollywood has to offer, for rest assured: The cyber threat (and much else) is coming to a building near you soon.

 

Additional Sources:

http://techcrunch.com/2014/08/05/smart-buildings-expose-companies-to-a-new-kind-of-cyber-attack/

The Institute of Engineering and Technology (IET) guidelines.

http://www.theiet.org/resources/standards/cyber-cop.cfm

Global BEMS Market set to Approach $7 billion by 2020

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

If I could point to a market which is already worth some $3.5 billion, or 3 billion Euros, and which is growing globally at well over 10% per annum, at a time when growth in building automation is a fraction of that, I suspect that many investors and industrialists would bite my hand off. This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Even Europe, which currently accounts for almost half the current Building Energy Management Systems (BEMS) market, is growing at around 10%, while North America has been growing faster, and the rest of the world substantially faster still.

BSRIA forecasts that the global BEMS market will almost double, to more than $6.8 billion by the year 2020. This impressive growth is set to occur in spite of numerous obstacles and uncertainties. This is partly because the factors driving this growth differ from one region to another.

In Western Europe, gas prices almost doubled between 2005 and 2013, while at the same time major economies like Germany became increasingly dependent on import of gas from politically sensitive countries like Russia and the Gulf states, raising the spectre of uncertain supplies.

While the rise in electricity prices has been less dramatic, Germany faces the huge task of fulfilling its commitment to

henry dec2shut down all nuclear power generation by 2022, and the UK faces similar challenges as its ageing, coal-consuming and CO2-spewing power stations reach the ends of their lives, with the ghost of Christmas back-outs rising like a Dickensian spectre to haunt the business and political worlds.

This, and increasingly aggressive environmental targets, at national and EU level, mean that even a Europe which has been in or near recession for more than five years continues to invest in energy efficiency. At the same time, there are signs that organisations at all levels are beginning to understand the full potential of BEMS to save money while meeting obligations and improving the brand.

In North America, the pressure of energy prices has been less relentless, especially since fracking of shale gas has got underway. The movement towards environmental regulation has also been patchier – often varying at local and state level, and has faced more opposition. At the same time, the proportion of energy consumed by office buildings has been rising inexorably at a time when energy used in such areas as transport, industry and homes has been either stable or falling, placing office buildings firmly in the sights of those wishing to make savings. North America also benefits from the plethora of firms developing innovative energy management solutions in both the USA and Canada.

In the rest of the world the picture is extremely varied, from developed countries like Japan and Australia with widespread adoption of BEMS, to major emerging economies like China, where energy has hitherto been seen as rather less of a problem but where the pollution associated with fossil fuels is becoming more pressing.

This growth presents huge business opportunities but also as many gauntlets thrown down. The mainstream building automation suppliers are all active, unsurprisingly, given that the two are so genetically interlinked that building automation was originally widely referred to as building energy management. They can offer the benefit of relatively easy integration of energy management into the building’s wider functioning.

Against this, as virtually every device, appliance and component of a building becomes capable of generating and communicating data, the advent of big building data has opened huge opportunities both to enterprise data and IT suppliers and to an army of smaller newer suppliers of advanced analytics, allowing building managers to predict and pre-empt problems that degrade a building’s energy performance.

Some of these new entrants will fall by the wayside, especially given the level of overlap between many of the offerings, others will be ripe for take-over, but a few are likely to emerge as major disruptive players. In our report we identify the leaders and challengers, along with the niche players and some of the most likely acquisitions. As always, there is an implicit conflict between the move towards integration on the one hand and the desire for innovation on the other, and we look at some of the standards that are emerging to address this.

The prize is most likely to go to companies that can combine innovation in new technologies, and understanding of how a building’s occupants interact with the building, with a deep-seated understanding of how buildings function. This report should help to shine a light on who will be left holding a torch for others to follow if and when the lights really do threaten to go out.

This is the industry that we explore in BSRIA’s newly updated report BEMS Opportunities.

Government Soft Landings

This is a blog by Peter Corbett, Principal Quality Inspector at Essex County Council

This is a blog by Peter Corbett, Principal Quality Inspector at Essex County Council

As a Local Authority employee I am well aware of the push for both savings and value for money, it is therefore reassuring to see the importance the Government is affording their version of ‘Soft Landings’.

The Cabinet Office sees soft landings as the ‘golden thread’ of BIM, rather than a delivery tool, and is looking for three key benefits from its implementation, those being; Improved Environmental Performance, Improved Financial Performance and Improved Functionality and Effectiveness.

The Government’s Soft Landings policy drawn up in September 2012 recognised that ‘The ongoing maintenance and operational cost of a building during its lifecycle far outweighs the original capital cost of construction, and GSL identifies the need for this to be recognised through early engagement in the design process.

To help the development of GSL a stewardship group was formed to which all government departments and agencies were invited. This group generally meets quarterly with around twenty department and agencies represented. It seeks to update the GSL implementation progress across departments, develop training ideas and determine ways of measuring the benefits that could be gained from the process.

GSL has been the archetypal snowball, steadily gathering pace as it moves toward 2016 when the Cabinet Office has asked for its adoption by all central government departments and agencies, and gradually increasing in size, as with each stewardship meeting more departments and agencies are in attendance.

I was fortunate enough to receive an invite to the last GSL stewardship meeting through my links with the BSRIA Soft Landings User Group and as a Local Authority representative, and was encouraged to see the enthusiastic approach to soft landings from some of the more engaged departments, they like ourselves see the advantages soft landings could offer (albeit from an FM focussed approach that more considers the ‘In Use’ benefits) and are eager for the evidence of this that case studies and their like could provide. Of course as with most matters concerning Central & indeed Local Government the journey is never straight-forward, and as could probably be expected the speed of soft landings adoption varies greatly both in levels of commitment and of development between each Government department and agency.

So what next for GSL? On Friday 7th November there was a GSL supply chain engagement day, to which all Government departments and agencies were invited and encouraged to extend invites to their design, construction and facilities management partners. Attendees were treated to seminars on what Government Soft Landings actually are, why they should be used and how they should be implemented, as well as what training and ongoing support could be provided.

Soft_Landings_logo-highIt was fairly evident from the nature of the questions from Government department representatives that there remains a lot of work to do to obtain both a participative and consistent approach across all departments, as well as the difficulty in impressing on the supply chain providers that success on a project is not merely about building to budget and programme. As pointed out by one contractors’ representative ‘We know of Soft Landings, but that’s where our knowledge ends’, a better description of what GSL actually is was requested with examples of what ‘success’ actually looks like, and also recognition that there is a clear shift from Capex to Opex in the governments construction expectations. All evidence that there is still much to do to achieve wider engagement in soft landings throughout the industry.

But there remains a high level of commitment to soft landings from the Government as evidenced by this event, and this is likely to soon have an impact on those of us in Local Government. In my own Authority we have been using the principles of soft landings in order to help improve the delivery of our projects in areas that have proved problematic; this has predominantly centred on the handover and defects resolution stages, and also end-user training on their new building. For us the ethos of soft landings has been extremely beneficial, but we have been fortunate enough to get the buy-in from our framework of contractors, again some contractors are more engaged with the practice than others, however with the Governments push for the use of soft landings it should encourage everyone’s participation in the process, and hopefully to the benefit of all involved; commissioner, client and contractor.

 

Blogger profile

My working career began early 1980’s in civil engineering, after taking various qualifications I moved into construction after an acquaintance encouraged me to become a clerk of works at the age of 21.  I joined Essex County Council initially as an assistant clerk of works and have remained with the authority for almost thirty years, latterly as the authorities Principal Quality Inspector. I have more recently acted as the construction performance manager on Essex County Council’s Contractors Framework, for which I am undertaking the role of Soft Landings champion. I am a Fellow of the Institute of Clerks of Works and the Construction Inspectorate having first joined the organisation in the 1990’s.

%d bloggers like this: