Making buildings better – measuring for improved building performance

Andrew Eastwell, BSRIA CEO

Andrew Eastwell, BSRIA CEO

BSRIA has always been in the business of measuring, whether it is a physical quantity such as temperature or pressure, a market assessment such as volume of product imported to a given country or a softer, more management-orientated value such as a benchmark or satisfaction score. Measuring is a fundamental characteristic of our industry’s operations and it is in BSRIA’s DNA.

The need for accurate and more comprehensive measurement has been increasing in response to the revolution that is the low carbon agenda. Revolution is no idle description either. In just over a decade, carbon signatures of new buildings have been required to fall to “nearly zero” – yet few owners were even aware of their building’s operational carbon use at the start. In looking backwards over the past few years, I think BSRIA can be proud of its role in promoting the increased use of through-life measurement embedded in processes such as Soft Landings and the associated building performance evaluations.

There is another BSRIA process that is associated with the collection of measurements. This is the process that turns detailed, often randomly accumulated and frequently disconnected data and information into documents that can be used by our members to guide them in their work. A couple of decades ago this process was greatly enhanced by the availability of a managed construction research programme that not only contributed funds from central government but much more importantly brought focus and long term stability to the accumulation of knowledge. This stability was crucial since it enabled individuals to establish research skills and careers with enduring value to the sector they served. Loss of this programme has also resulted in a loss of cohesion between frontline companies willing to collaborate within the longer term research process.

There is a however a new kid on the block that may be about to revolutionise the traditional measure/analyse/publish process that has dominated research and guidance in our sector.

As disruptive technologies go, Big Data has managed to remain under the public radar quite well until the recent disclosures of the USA “Prism” project. Under Prism, colossal quantities of data harvested from both open and private sources are analysed to identify supposed threats to homeland security. It is the use of automatic analytics software combined with large arrays of sophisticated new sensing technologies that makes Big Data techniques so intriguing for the built environment sector.

By way of example, consider the problem of maintaining comfortable temperatures in a space. Traditionally we have used lab research on volunteers to establish what “comfort” requires. Ole Fanger took years to generate his widely used algorithms but they still do not cover all the possible variables that affect perceived comfort. We now use a thermostat, with a setpoint guided by Fanger, and assume that all is well with our occupants. In the new paradigm, cameras utilising facial recognition software will be capable of spotting yawning (too hot, too much CO?) or sluggish activity (too cold). This data is available for every worker in a given space and a “voting” system used to optimise comfort over the group.

But of course there is more. This data could be available from many sources in a Prism type environment. There would now be the potential to mine the data to establish new benchmarks feeding back to the design process that can be tailored to the particular activity type. Schools, offices, homes and shops each can be analysed not just to establish a single setpoint value but to understand in great detail the envelope or distribution of responses. At last, proper large scale data sets can aid our work – and most of what we need to do this is already available through installed BEMS.

There is one further gain possible from this approach. Traditional academic research leading to refereed papers and thence to institutional guidance can take half a working lifetime to complete. Big Data results can be achieved in hugely reduced timespans. Take the case of adverts you see on Google – these are tailored specifically to you based on purchase decisions you may have only made via unconnected sites a few hours earlier. Scary but true.

Big Data is where BIM, Smart Cities, performance contracting and responsive design meet. It challenges all the preconceptions of professional codes, cuts swathes through the notion of privacy and opens up “our” market for knowledge to an entirely new set of competitive players. The next decade is going to be seriously exciting and I am sure BSRIA will remain strong to its ethos of Measuring and Managing in this startling new environment.

BSRIA provides a range of services to conduct and support BPE, from the complete evaluation to providing energy monitoring instruments and benchmarking building performance.

Review of the BSRIA Briefing 2013 – Changing Markets, New Opportunities

“Construction is the last of the big industries to go digital”, John Tebbit, Construction Products Association

November 2013 saw another brilliant BSRIA Briefing held as always at the fantastic Brewery in London. The event was chaired by John Tebbit, Industry Affairs Director at the Construction Products Association with c400 industry professionals in attendance. The speakers this year were focusing on customer satisfaction, data centre trends, changes in building practice and design decisions, smart technology leading the industry forward and the internet of things.

Chairman John highlighted two key issues facing the industry, the Construction 2025 strategy and the move towards Low Carbon as well as the construction industry being the last industry to go digital despite a demand to do so.

Bukky Bird talked about Tesco as a continuously changing organisation by highlighting some of the company’s historical milestones. From Tesco’s founder Jack Cohen opening a market stall in 1919 to becoming a global company with just over half a million colleagues today.

Bukky also highlighted some current customer expectations and key drivers for this such as the current economic context. She emphasised the need for organisations to understand and respond to changing needs and environments.

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, Tesco

“A green agenda is a prerequisite of what customers expect from a brand like Tesco”, Bukky Bird, TescoToday’s customer is under pressure, struggling with rising costs and dealing with lifestyle changes. The focus is therefore on family and the home, with a real expectation that brands should reduce waste and save money. Responding quickly to these needs is critical for retailers like Tesco and this should therefore drive the focus through the industry supply chain.

A challenge facing our industry is how to develop true partnerships to tackle these problems. Bukky highlighted the need for flexibility, agility and the need for the industry to be willing to change. The customer is changing radically and the building industry needs to be ahead of this curve.

Historically we have been very slow to adapt, and this is an opportunity to buck that trend. Her final point was that the industry are not supplying Tesco, but Tesco’s customers – understanding the customer’s needs and developing innovative solutions to meet these is key to successful partnerships.

“Nobody ever did anything to be green, they did it to save money”, Nicola Hayes, DatacenterDynamics

 Nicola Hayes looked at a rather different sector focusing on data centre trends and energy. Datacentres Nicola argued are the buildings you do not see, the hidden side of the industry and yet becoming a central part of several industries as people relocate their data to the Cloud. Nicola discussed the fact that Datacentres may be hidden but they do suffer negative publicity mostly due to the energy usage of such buildings and the accusation from the Press that they are singlehandedly destroying the planet. When viewing the industry as a country, the industry uses a little less energy than the UK as a whole, marked at 332.9TWh which is an exceptional amount and understandably a worry for the industry and a target from the Press.

But it was the trends that Nicola was concentrating on, where the Datacentre industry has come from and the expectations of it for the future. In three years the industry has grown from $86bn to a staggering $120bn as well a doubling in space used for the buildings, growing from 15million sqm to 31million sqm. The growth of Datacentres is down to several other key industries, the rate of increase has risen for Professional Services, Energy & Utilities, Industrial & Process and Media & Telecoms. With this growth there has been a change in how Datacentres are being built and their operations. There has been a 15% increase in outsourcing for the industry since 2007 rising to nearly a quarter of the industry but IT Optimisation still remains a major investment.

For the built environment the biggest change Datacentres has had for them is the increase in energy monitoring and the storage of millions of data bits. People in the world, particularly the US, UK and Germany are starting to become more conscious of energy efficiency therefore more business is generated for the Datacentre industry through big data from energy monitoring. Nicola pointed out that this is not done for a purely ‘green’ reason but primarily to monitor costs which are why most universities do not monitoring as they are not responsible for the financial side of their energy use.

With there being such a focus on energy efficiency, the way Datacentres are being built has also been a changing trend with there being 25% increase in the number of retrofits of Datacentres while there was only a 2.1% increase in the number of new builds. Efficiency measures (to answer to the Press criticism) are also now determined from the outset. However despite Datacentre industry growing at a fast rate there are risks involved for the industry from the small scale of compliance to the large scale of terrorist attacks. With these risks comes an important debate that is happening within the industry, cost vs. risk.

“There is a market for MVHR but we need to get better at delivering it”, Nigel Ingram, Jospeh Rowntree Housing Trust

 Nigel Ingram continued with a discussion about social housing and the consideration of end users when designing buildings. The Joseph Rowntree Housing Trust currently looks after 2,500 homes in Yorkshire and Hartlepool. Nigel discussed one particular project the Housing Trust are involved in, the Derwenthorpe village which looks at the lessons learnt from past projects and how they can improve their buildings. The way the Joseph Rowntree Housing Trust decided on best building practices was through experimentation over four years, they built two prototypes and used 17 different methods and as many M&E components as possible including grey water harvesting and block work systems. The aim of this experimentation was to see what worked to create the best possible building.

As well as all these design considerations Nigel also enforced the importance of the end user and their lifestyles with the Joseph Rowntree Housing Trust looking at how people live in buildings and what changes in lifestyles are expected in the future and how best can the prepare buildings for that. There were three main points that made up the JRH’s strategic servicing infrastructure, the first being fibre optics. The Trust believes that with the use of technology ever increasing including internet, television packages etc. they needed to invest in a viable cabling network. However none of the big companies were prepared to discuss such a project therefore the Trust developed a joint venture with an investor to set up their own fibre optics for the estate, by doing so they satisfied the customers and set them up for any increase in connectivity in the future.

The second point the Trust considered was Communal Heating, they looked at a variety of different heating techniques for the estate such as low ground source heat pumps.  Communal Heating was decided on in 2007 from a carbon footprint point of view as at the time the Code of Sustainable Homes was announced with zero carbon targets by 2016. Communal Heating is notoriously difficult to get working efficiently, just like any heating system however after it was distilled down into the six components that worked for the Trust it was able to provide fuel security and prince control for the future residents which is what users wanted from their buildings. The system now works and is one of the only systems in the country that is successful and has been contracted for 25 yrs to a European Communal Heating group.

However Nigel wanted to point out that the Derwenthorpe village has not been completely successful, the final point in their strategic servicing infrastructure was MVHR Systems. The project has not seen any success with these systems, it has been installed in 64 houses but customer feedback has been negative and there are many issues with it. As an alternative MEV is now being used. Nigel stresses that there is a market for MVHR systems but for it to work there needs to be massive improvements in the industry in terms of commissioning, installation and maintenance. There seems to be a technology focus rather than process and this needs to change if the industry is to satisfy clients and users of buildings.

Nigel’s main focus for the Derwenthorpe project was customer satisfaction, the importance of the end user. Fibre Optics and Communal Heating was installed for the benefit of the residents of that estate as they have certain expectations of the way they live including operational and financial. The Joseph Rowntree Housing Trust has focused on the end user for their design plans rather than what should work from the industry perspective. Rigorous testing and accepting systems aren’t right has gone into making sure buildings are built as best as they can be which is important for our industry, it’s taking into consideration the mistakes made on previous building stock and learning from them and also considering the occupants and their needs.

“The Cloud is as suited to small buildings as it is to big buildings or building portfolios”, Jeremy Towler, BSRIA

 Jeremy Towler reflected on the “smart” built environment and how we get there. Jeremy highlighted that there is a lot happening and changing in our industry emphasising that we are the last industry to go digital despite there being several opportunities for digital work particularly wirelessly. BEMS will become an increasing component of buildings, modules will be built off site and therefore digital technology needs to be an important investment. Mobility will also become a more important part of the built environment, currently everyone uses a mobile but with geo-location buildings will be able to recognise everyone in buildings and respond dynamically. With this the collective voice of the occupants starts to influence the building which could be quite revolutionary.

Building Analytics are also an important step towards a “smart” built environment, increasingly buildings have sophisticated software that permits building operation and how best to optimise them. With Building Analytics becoming a more common part of our industry there has been a move towards the Cloud which has allowed data mining to reveal relationships and trends we never could have imagined. With these advances also comes the development of Smart Cities, particularly in China where there is a commitment to build at least 30. Jeremy defines smart cities as an incorporation of intelligent buildings, broadband connectivity, innovation, digital inclusion and a knowledge workforce.

But Jeremy states it’s not just smart cities we have to consider, its smart grids and smart buildings. Smart grids is an advanced power grid for the 21st century, essentially it is a decentralised multi directional model where energy and information can flow from supplier to consumer and vice versa which enables a variety of new applications for homes and businesses. Smart homes on the other hand have reached a critical mass and are due to break into the standard housing market but with this there has been an opportunity seized by the utilities who are now offering connectivity.

With smart homes becomes the internet of things and the ‘ubiquitous homes’ where sophisticated systems learn behaviour and respond accordingly, like our mobile phones that can tell us where we want to go and how we need to get there, such software will be used in our own buildings to provide our homes with the settings that we need. However the current built environment is a long way from becoming a smart industry, currently more than 75% of the building stock has no intelligent controls which is primarily to do with the age of the buildings with over 40% of total stock being built before 1960. With this in mind there is an opportunity for the industry to consider a great deal of retrofit projects but for smart technology to work to its best potential for the built environment the industry needs new skills developed through training in software and hardware analysis.

“We are now accountable for how our buildings perform “, Michael Beaven, Arup Associates

 Michael Beaven continued on this theme of the industry needing to change but instead focused on workflows. Arup has learnt that change is beneficial to the industry, adaption is necessary to meet the needs of the client. Arup have changed what they do and how they do it, learning that doing things the same way over and over again is to no benefit. However despite the need to adapt there are constants within the industry, carbon being the main issue for energy costs and emissions for companies in reputational aspects as well as the bottom line an example being Sky who are very forward looking including reducing the carbon of their set top boxes from 10 to 4 watts saving 20megawatts to the grid.

Importance of energy and efficiency is paramount but so is what we build it with. Embodied carbon is a key player in how we build our buildings now; decisions are being made on where products come from and their whole life cycle rather than primarily cost efficiency. Buildings are also being tested now, everything is monitored in our buildings so we can learn how to improve them, we are accountable for how buildings perform. From this we can learn how to design buildings that are successful for end users.

Michael also emphasised Jeremy’s point of the internet of things, how the integration of IP controls are making building betters and even the advancement of BMW considering smart transport for smart cities. Building on the interaction between traffic signals and mobile data to develop relationships between them to better control traffic, even where you park will be managed in a smart way. Another important development in terms of smart technology is that people are now connecting and sharing information on what works for a building and how best practices can be established.

One of Michael’s most important arguments was the importance of BIM and the matter that we as an industry really need to get up to speed with it. It’s client driven so we need to be on board as it is not only changing our workflows but also our business, without a grasp we lose projects. There also needs to be an acceptance that BIM is not just about 3D drawings and design but rather it should be a changing of our work streams to digital.

BSRIA Briefing panel answers questions from the audience

Michael’s final point tied in one of the key themes of the morning, customer satisfaction or rather the importance of the end user. Arup are moving towards an end user focus, designing buildings for people rather than the client or the architect. He used Sky as an example of a company championing a place for people, designing a building that understands what the user wants rather than what is considered the best design. Michael emphasised the feedback loop, empowering people to vocalise what they want in a building, what controls work for them, with that Soft Landings is critical for discovering what works and what doesn’t and resolving these issues before a project is completed.

There were a variety of thoughtful questions throughout the morning ranging from what the industry is doing to combat the UK’s power supply reducing to 2% by 2016, John Tebbit argued that the UK needs to stop investing in the UK and instead build industry abroad and import into the UK. There was also discussion on why there are so many installations problems within the industry, Nigel Ingram suggested there was too much blame placed on the end user, that there needs to be more ownership of mistakes and to learn from them if the industry is to move forward. This was the key theme throughout the morning, for the industry to move forward in any pursuit especially digitally we need to focus on trends and accept change as a good thing. But when accepting change we also need to learn from our past mistakes rather than continue to avoid them.

“Change comes from doing 100 things 1% better”, Sir Clive Woodward

Following lunch guests were treated to an afternoon speech from Sir Clive Woodward who continued the theme of change being necessary to move forward and how that worked for the England rugby team and the British Olympic team. Sir Clive’s talk looked at the 3F’s or 6F’s argument and interestingly the importance of an Australian dentist and his impact on working habits. He emphasised the effort of a whole team being behind any win and argued that talent is not enough but learning, calmness and hard work are needed to leverage it.

A special mention also goes to Chris Monson, of main sponsor Trend, who was awarded an Honorary Membership of BSRIA, becoming only the 8th person honoured. Chris accepted the award from BSRIA Chairman Leslie Smith and thanked the company as well as the industry.

A big thank you to all delegates that attended and the speakers who gave their time to the event. Also thanks to Sir Clive Woodward for being our afternoon speaker and rounding up a fantastic Briefing.

To download the presentations from the event go to BSRIA’s website.

Smart metering makes BPE easy…or does it?

BSRIA's Alan Gilbert

Head of BSRIA Instrument Solutions Alan Gilbert

Building Performance Evaluation (BPE) is here to stay. With government driving towards 20% reduction in costs for its built estate and increasing unwillingness to accept design predictions as sufficient to prove outcomes, objective measurement will be key. Government Soft Landings (GSL) and the implied BPE activities attest to this. In the housing sector regulation is increasingly looking to proof of performance (airtightness for example) with a growing European focus on providing owners with objective labeling of homes. The recent announcements of the 2013 revisions of Part L have largely focused on fabric issues but it seems likely that attention will now turn to the performance of installed HVAC plant and associated controls which themselves will present a challenge in proving that combinations of low carbon technologies are indeed working properly.

All this is happening at the same time as measures to introduce smart metering are coming on-stream. With a commitment to have full implementation by 2020, smart meters should provide a powerful means to assist with BPE of both commercial and non-commercial buildings but will they really realise this objective?

Just how “smart” is smart in the context of metering? At its lowest level the smart meter simply offers a remote display of energy use (often expressed in £) so that users are sensitised to consumption. Rarely are both gas and electricity monitored and I know of no instance where water is included as well. This is a shame: water (especially hot water) is an increasing proportion of dwelling energy use and is largely ignored by householders. There is increasing evidence that this kind of visible display can have good initial impact but that users rapidly de-sensitise. Really, these meters are not smart but simply remote display devices.

More commonly “smart” means that meter readings can be transmitted to the supply company on a scheduled basis. This is the type currently planned to be used in the present roll-out. Again it is unlikely that all three services are monitored and the data is often collected at no more than half hour intervals. As an alternative to self-read or estimated billing they are undoubtedly an improvement and will help electricity companies come to terms with balancing home generation and network loading but the thorny problem of access to data remains to be overcome.

Finally there is the possibility of the “really smart” meter which will permit full two way communication between utility and user thus bringing into reality the possibility of sophisticated demand management options for the power companies. Potentially this could be a rich source of data for BPE but ownership of the protocols and access rights are likely to be a serious hurdle to potential third party users of this resource.

Even if full access to a multi-service, duplex remote metering scheme is possible it cannot provide the additional data that a proper BPE service demands. In order to interpret energy use data additional sensors are needed to enable forensic analysis. Internal temperatures, occupancy rates, casual gains from white goods and local weather, all are needed to understand and normalise energy use back to some design criteria. Even when all this is achieved there is often no substitute for “feet on the ground” to interview occupants or spot unusual behaviours.

Access to large volumes of user data is one key requirement to understanding just how the various interventions in existing dwellings or

British Gas Smart Meter

British Gas Smart Meter

the application of new regulations in the built environment sector are working. The Department of Energy & Climate Change (DECC) has developed a restricted access National Energy Efficiency Data-Framework (NEED) and this has proven invaluable in understanding the real impact of certain measures such as cavity fill retrofits. Unfortunately this kind of data is not readily available to the wider research community at present nor is it fed from real-time or near real-time sources. This makes it unsuitable for analysis of individual properties.

We want to really deliver truly low energy (an carbon) buildings that are also healthy, productive and comfortable to use but,until the tangle of issues associated with privacy and smart metering are resolved then there is little alternative or more of this kind of work that will not only resolve issues in individual dwellings but also create a new generation of people able to interpret complex building physics and behavioural data. Surely a good thing in itself. If however we really want to look at effects in the wider population of buildings then DECC should be encouraged to invest in NEED and roll it out to wider research community so that academics, business and industry can better identify opportunity for action in bringing UK nearer to its legal carbon commitments.

For more information about BSRIA’s involvement in BPE including a presentation defining BPE as well as information on how Soft Landings fits in click here.

If Buildings Could Talk to us…

It was really only a matter of time:

This blog was written by BSRIA's Henry Lawson

This blog was written by BSRIA’s Henry Lawson

Buildings are where we typically spend the greater part of our time, both at work, and often as not outside of it.  They already consume about 40% of the energy used in most advanced countries. They represent a huge proportion of our investment, both as individuals and as a society.  For centuries the technology of the day has been deployed to make them more efficient, comfortable and healthier for their occupants.

The surprise is surely that it has taken so long for information technology to really  move centre stage in our buildings. While smart homes remain, at least in most countries, a slightly geekish luxury item, many of us already spend our working day in environments managed by quite advanced  building automation systems, which aim to maintain a safe, secure and comfortable environment.

As building systems become more sophisticated, the more critical it becomes to be able to collect information about the state of the various components, and how they are interacting.  Accordingly, leading building automation and controls (BACS) suppliers, including Honeywell, Johnson Controls, Schneider Electric and Siemens have increasingly been making software available in order to process and make sense of this information.

In this they have been joined both by some of the big enterprise software players, but also by a host of  comparative newcomers. A key factor here is that the amount of data and the complexity involved can be quite large. It is easy to see that if you are in the position of managing a large portfolio of buildings, perhaps as a facilities management company, then if these buildings are automated then you may have to analyse a large volume of data to ensure that your estate is performing efficiently in terms of energy usage, costs, maintenance schedules, etc.

What is less obvious is that even for a comparatively modest sized building, the data can be potentially quite complex.  To get top performance from a building you need to look beyond the obvious. This means not just taking account of data from individual sensors or other information generators, but how these each  interact with one another. For example, one surprisingly common scenario is where the temperature in a given zone is fine, but only as the result of a heating system and a cooling system battling each other to standstill, wasting alarming amounts of energy – and money – in the process.

To identify these types of scenarios the system needs to be able to check very many different measurements against other ones and

The BACS Market

The BACS Market

identify relationships and correlations. And once the “normal” patterns and correlations have been identified it can then look for anomalies, which may be a warning sign that something has gone wrong, or at the very least that something abnormal has happened. Why for example, might a temperature be spiking in one part of a building at an unexpected time?

It is these kinds of challenges, as much as sheer volume that we are talking about when we refer to “big data”. Not only is this far beyond the capacity of the best human brain to process in any acceptable timeframe, it requires advanced analytical software to identify and prioritise the most important events, almost literally to “understand what your building is trying to say to you”.

A whole range of suppliers are now active in this space, and some of them at least are likely to have a huge impact on how building automation develops going forward.

Here at BSRIA, in the latest regular update to our Hot Topic study on Threats to BACS Hot Topic for October 2013,  we focus on this area, as well as taking a look at the implications of another, less fortunate, consequence of the growing importance of IT and software in the built environment: the spectre of cyber-attacks on buildings.

How will you invest in Soft Landings?

Budgeting for better building handover

Soft Landings is an open source process designed to overcome problems after handover. It is arguably an increasingly important part of procurement philosophy. Three year periods of aftercare are regularly being considered a core element of project plans; however, with Soft Landings comes great responsibility. The question is whose responsibility is it to include Soft Landings and ensure it gets done?

All clients want high performing buildings but are not always willing to pay additional costs for the aftercare process. On the other hand the building industry has a right to demand additional fees if they are taking on more responsibilities and higher risks. This standoff won’t resolve itself without some easing of tensions.

As an advocate of better building handover, I believe that both clients and contractors need to change their expectations. More fundamentally, both sides of the contractual fence need to recognise that although they may share an ambition for a high-performing building, it does not become such until it is proved to be. This means troubleshooting the building and fine-tuning it way beyond resolving snags and defects.

Once a client acknowledges that it wants its project to adopt Soft Landings, it needs to ensure that the methodology is expressed throughout the entire process. The client should not assume that the contractor will take responsibility for it all; BSRIA has seen a number of documents that puts the responsibility of Soft Landings completely with the contractors when it should definitely be a result of negotiations between all parties involved. A client also needs to be specific in what they expect from their consultants and sub-contractors. Therefore such a project should unquestionably be a collaborative effort with equal responsibility and realistic expectations shared by all.

However, this commitment can’t come for free, which begs a question of where the costs lie, and what they amount to.

Setting aside a budget

It is essential that clients acknowledge that a budget needs to be set aside for Soft Landings, especially if they want a three year period of aftercare. A reasonable place to start is by feeling a nominal budget and then to discuss how it can be best invested, all projects are different but BSRIA believes that 0.1% of the total contract value is a good place to start. Then comes the hardest part, how do you distribute such a budget?

The budget needs to include the three year aftercare period but also other additional Soft Landings activities required during the design and construction process, such as periodic reality-checking. It is also important for clients to note that they will have additional costs at later points if they take into consideration the need for independent building performance monitoring. So, overall, does the 0.1 per cent rule hold true? By and large it’s a good place to start.

If the budget proves inadequate for the client’s ambitions, then those ambitions either need to be scaled back, or the budget increased. Undoubtedly, all parties to the aftercare process stand to gain from the lessons learned, so it is absolutely in their professional interest to meet each other halfway. 

If an agreement and a clear plan can be put into place early then it is entirely possible for such a project to be successful.

To gain a better understanding Soft Landings procurement and budgets read the full article here:

 http://www.bsria.co.uk/news/soft-landings-budgets/

Post Occupancy Evaluation – The challenges of a ‘greener’ future

I joined BSRIA as a Graduate Engineer in January 2011. Prior to this I was studying for my PhD in the School of Civil Engineering at the University of Leeds.

An Appraisal of the performance of a ‘green’ office building

A summary of my research is given below:

The challenges of a ‘greener’ future are now a responsibility for everyone. This is particularly so for the built environment, where sustainable building design is no longer an innovative option but more of a legislative must. Unfortunately significant differences are often found between the design and measured performance of buildings, with many factors contributing towards these discrepancies.

The research work investigated, using Post Occupancy Evaluation (POE) techniques, the credibility gap between design and measured performance of a partially occupied ‘green’ office building selected as the case study. The results found that the measured energy consumption was over three times the design estimates, and the performance compared poorly against good practice benchmarks for similar buildings. The study’s POE also revealed inefficient control settings, high out-of-hours energy consumption and ineffective building management.

This study went beyond a typical POE as it also includes investigations into how the occupancy variations, and the management strategies applied under these conditions, can impact on building energy performance through the use of simulation modelling techniques (IES<VE>). This is an area where very little research had previously been carried out. At the 50% occupancy levels found at the time the research was conducted, potential annual savings of over £30,000 in utility bills and 60% in energy consumption were estimated if more effective management and control was implemented.

Social-related aspects of building performance are also investigated. Occupant satisfaction and comfort surveys were conducted and the results were compared to previous findings. The perceived comfort and satisfaction with temperature was the most disappointing finding from the survey, however overall the building was comparable to the average benchmarks, but did not perform well when compared to other ‘green’ office buildings.

The study revealed the potential for the building to be fine-tuned to perform more efficiently than was at the time of the study, however there must be suitable, skilled Facility Management to ensure this is delivered.

For more information on Post Occupancy Evaluation/ Building Performance Evaluation…..

%d bloggers like this: