The BIM Level 2 jigsaw – nearly complete?

The Level 2 programme was defined in the BIM Strategy which is available at  www.bimtaskgroup.org

The Level 2 programme was defined in the BIM Strategy which is available at
http://www.bimtaskgroup.org

In my blog article back in June  I discussed how the UK Government had refined its Level 2 BIM requirement and express it in the form of compliance with seven components:

  1.  PAS 1192-2:2013 Specification for information management for the capital/delivery phase of construction projects using building information modelling
  2. PAS 1192-3:2014 Specification for information management for the operational phase of assets using building information modelling
  3. BS 1192-4:2014 Collaborative production of information. Part 4: Fulfilling employers information exchange requirements using COBie – Code of practice
  4. Building Information Model (BIM) Protocol
  5. GSL (Government Soft Landings)
  6. Digital Plan of Work
  7. Classification

Since then BS 1192-4 has been published, leaving just the Digital Plan of Work and Classification elements to be completed.  As reported previously, these were the subject of a TSB-funded competition and I thought it would be useful to give an overview of how the competition went and where it is now.  This is a fundamental piece of work that is set to have a huge impact on BIM in the UK and it is vital that as much of the industry as possible has an awareness of what is happening, and get involved wherever possible to help make it a success.

The competition brief was developed, with industry consultation, and has been administered via the Innovate UK (formerly TSB) SBRI programme under the title “A digital tool for building information modelling”.

The competition process involved two phases – Phase 1was a feasibility study, with organisations or consortia invited to submit proposals with funding of up to £50k (including VAT) available to each.  Three teams were awarded these phase one contracts:

  • RIBA Enterprises Limited, together with BIM Academy, BDP, Laing O’Rourke, Microsoft and Newcastle University
  • BRE Global Limited, with buildingSMART UKI
  • CIBSE on behalf of a group of industry professional bodies known as C8, consisting Association for Project Management (APM), British Institute of Facilities Management (BIFM), Chartered Institution of Building Services Engineers (CIBSE), Chartered Institute of Building (CIOB), Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE), Royal Institute of British Architects (RIBA) and Royal Institution of Chartered Surveyors.

The results of the Phase 1 stage can be seen here.

On completion of Phase one, two of these submitted bids for Phase 2 – RIBA Enterprises Limited and BRE Global Limited, and RIBA Enterprises Limited was awarded the single Phase two contract.

At the time of writing, the results of the Phase two competition had not been posted on the Innovate UK website so it has not been possible to compare what RIBA Enterprises has said it will deliver with the functional specification.

As RIBA Enterprises has developed Uniclass2, which it uses for some of its other software tools, it is probably safe to assume that the classification solution delivered as part of this competition will be based on that format.  That being the case it will be interesting to see how Uniclass2 is developed to cover all necessary instances, and not just those which may occur within the 3D model.  The classification system needs to be capable of capturing everything which may be held within the common data environment (CDE) in order to make the objectives of the standards such as PAS 1192-2 and PAS 1192-3 a reality – the PIM during construction and AIM during operation being the sole sources of information for further use, having been verified and validated against the EIRs and OIRs.

Many experienced BIM practitioners recognise the need for a comprehensive classification system to make information available throughout the life of an asset, letting it be used time and again rather than having to recreate it, and this project could make this a reality.  However, careful thought needs to go into it to make sure that everything that needs to be classified can be, and in a way that can be understood.

Designing for change

Ian Harman of Marflow Hydronics (BSRIA Members)

Ian Harman of Marflow Hydronics (BSRIA Members)

With the industry moving at such a fast pace, new innovations are being introduced all of the time. Manufacturers are inventing great new products that offer many benefits; solving the problems of the present to provide a better future. The biggest problem that they face, though, is launching these products on to the market. This is where BIM could really help. 

I think it’s fair to say that people don’t really like change. We like to stick to what we know and what we feel comfortable with. This seems to be the case in our industry. Many people, from consultants to installers, are still completing jobs and planning projects in the same way they’ve been doing it for years; that is in very traditional ways. A prime example is how there is still much use of two port control systems despite Pressure Independent Control Valves having been around now for quite a while. These newer products are faster to implement and more reliable in the long term, yet there is still a reluctance with some people to adopt the new technology.

It’s true that with any new product there’s inevitably a big learning curve to using them, and often training can be time consuming. There’s also the fear of risk. If people use a new product that they’re not so familiar with then there’s always the chance that it will go wrong. This could be because the user isn’t so experienced at using it, but also it could turn out that it wasn’t the ideal product after all and sometimes knowledge and experience can really help when making decisions. This is where BIM steps in.

Using BIM, manufacturers can create models, which I like to think of as ‘Lego blocks’, that they can send to customers to introduce them to a product. And they can do this long before any decisions have been made, at the very initial stages. The ‘Lego block’ would be a visually simplified model that not only clearly defines the spatial envelope and connection points, but also includes a wealth of ‘metadata’. This ‘metadata’ contains data fields specific to the particular products, such as flow rates for valves or electrical loads for powered devices.

BIM - Marflow Hydronics
That all means that clients can look at the products in detail and trial them in their plans from the very beginning. They will be given the time to properly analysis products and see how they will work within the system and how they will interact with other components.

By starting with the end in mind and properly understanding the system at the initial stage, it will help to future proof the project far down the line. It’s also the cheapest time to detect any issues. The easiest time to make a design or selection change is at the beginning of a project and BIM facilitates this in a much more user friendly manner than ever before. This would undoubtedly give them much more confidence in the products they’re looking to use and would, very importantly, remove that fear of risk.

BIM provides users with the time and ability to put much more thought into their projects earlier on, minimising that risk further down the line. This then increases the chance of far more successful project that works with the best products, potentially the latest and more developed ones, and there’s much more chance of it being on time and to budget.

BIM 2 - Marflow HydronicsManufacturers, like Marflow Hydronics, have been doing this to help bring new products into the limelight that otherwise customers may have been apprehensive about. More importantly, this has helped all parties get the right products specified when they may not have been otherwise. BIM may be the ideal solution to help us move more quickly into the future using more innovative products and having many of the niggling issues that have been around for so long vastly reduced, if not eliminated.

This was a guest post by Ian Harman, Technical Applications Engineer at Marflow Hydronics, BSRIA Member

If you are looking to find out more information about BIM, BSRIA runs two specific training courses:

There are also several other blog posts focused on BIM as well as a BSRIA BIM Network. 

The “Seven pillars of (BIM) wisdom”

In 2011 the report for the Government Construction Client Group defined Level 2 BIM as being:

“Managed 3D environment held in separate discipline “BIM” tools with attached data….”

However, as a consequence of ongoing development of the processes and tools available, and feedback from early adopter projects and other industry experience, the Government has recently refined its definition of Level 2 BIM as having the following seven components:

  1. PAS 1192-2:2013 is available to download for free from BSI

    PAS 1192-2:2013 is available to download for free from BSI

    PAS 1192-2:2013 Specification for information management for the capital/delivery phase of assets using buildinginformation modelling

  2. PAS 1192-3:2014 Specification for information management for the operational phase of assets using building information modelling
  3. BS 1192-4 Collaborative production of information. Part 4: Fulfilling employers information exchange requirements using COBie – Code of practice (due to be published Summer 2014)
  4. Building Information Model (BIM) Protocol
  5. GSL (Government Soft Landings)
  6. Digital Plan of Work (in preparation)
  7. Classification (in preparation)

 

1. PAS 1192-2:2013 builds on the processes described in BS 1192-2007, and introduces new concepts such as employer’s information requirements (EIR) – the employer’s expression what information they require from the project and the format it should be in, and BIM execution plans (BEP) – the supply chain’s response to the EIR showing how it will meet its requirements.

Read more of this post

%d bloggers like this: